017_SSS_Semantic Image Synthesis via Diffusion Models

Semantic Image Synthesis via Diffusion Models

从文章的标题就可以看出,本文主要实现了用于语义图像生成的Diffusion模型。

1. Introduction

本文的主要贡献:

  1. 本文基于DDPM,提出了一种新的用于生成高保真度和多样性的语义图像的Diffusion模型,称作Semantic Diffusion Model(SDM)。
  2. 现有的条件Diffusion模型不能很好的处理带噪声的输入和语义的mask。本文提出了一种新的网络架构,能够同时很好的处理带噪声的输入和语义mask。
  3. 为了在采样阶段得到更好的结果,作者提出了一种classifier-free的方法,能够得到高质量并且能和输入的语义图有高相关性的结果。
  4. 作者在benchmark数据集上的实验结果在FID和LPIPS两个指标上达到了SOTA。

2. Method

2.1 Preliminaries

理论基础就是给Diffusion添加条件。对Diffusion熟悉的话,看一下公式就一目了然。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.2 Semantic Diffusion Model(SDM)

首先是对Encoder和Decoder结构的改动。

在这里插入图片描述

从图中可以一目了然的看出作者的改动。结合了SPADE进行的设计。

2.3 Loss Function

除了原始的Diffusion损失之外,还加入了对于KL散度的约束。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.4 Classifier-free guidance

按照Conditional DDPM的采样过程的话,采样得到的结果虽然有很高的多样性,但是得到的结果可能并不能达到很好的真实性,而且结果和语义图之间的关系也可能得不到很好的保持。在之前的文章中提到过,conditional diffusion model采样的质量可以通过加入 ▽ y t l o g p ( x ∣ y t ) \triangledown_{y_t}log p(x | y_t) ytlogp(xyt) 从而得到提高。具体的做法就是:

在这里插入图片描述

也就是利用加入的梯度信息对反向网络预测的均值进行修正。
但是要得到这个梯度,之前的方法需要额外训练一个classifier网络来实现。本文提出了一种不需要额外训练classifier的方法。主要思想就是用一个没有标签信息的空图 ϕ \phi ϕ 将有条件的信息和无条件的信息分离。

在这里插入图片描述

在这里插入图片描述

2.5 训练和采样流程

整体的训练和采样的流程如图所示:

在这里插入图片描述

3. Experiments

作者在CelebAMaskHQ,ADE20K,cityscape三个数据集上进行实验,实验结果都能达到SOTA:

在这里插入图片描述

在这里插入图片描述

多样性实验:

在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值