# [bzoj5334][loj2573][TJOI2018]数学计算【线段树】

【题目链接】
https://loj.ac/problem/2573
【题解】
线段树维护区间乘积。
时间复杂度$O\left(N\ast logN\right)$$O(N*logN)$
【代码】

# include <bits/stdc++.h>
# define    ll      long long
# define    inf     0x3f3f3f3f
# define    N       100010
using namespace std;
int tmp = 0, fh = 1; char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-') fh = -1; ch = getchar(); }
while (ch >= '0' && ch <= '9'){tmp = tmp * 10 + ch - '0'; ch = getchar(); }
return tmp * fh;
}
struct Tree{
int sum, pl, pr;
}T[N * 3];
int P, place, n, rt;
void build(int &p, int l, int r){
p = ++place;
T[p].pl = T[p].pr = 0;
T[p].sum = 1;
if (l != r){
int mid = (l + r) / 2;
build(T[p].pl, l, mid);
build(T[p].pr, mid + 1, r);
}
}
void inc(int p, int l, int r, int x, int num){
if (l == r){
T[p].sum = num;
return;
}
int mid = (l + r) / 2;
if (mid >= x) inc(T[p].pl, l, mid, x, num);
else inc(T[p].pr, mid + 1, r, x, num);
T[p].sum = 1ll * T[T[p].pl].sum * T[T[p].pr].sum % P;
}
void dec(int p, int l, int r, int x){
if (l == r){
T[p].sum = 1;
return;
}
int mid = (l + r) / 2;
if (mid >= x) dec(T[p].pl, l, mid, x);
else dec(T[p].pr, mid + 1, r, x);
T[p].sum = 1ll * T[T[p].pl].sum * T[T[p].pr].sum % P;
}
int main(){
for (int opt = read(); opt--;){
place = 0;
build(rt, 1, n);
for (int i = 1; i <= n; i++){
}