机器学习随笔13--主成分分析法

摘要

  本文主要介绍降维技术、主成分分析法,及其应用。

目录

一、降维

1.1 降维简介

  降维是对数据高维度特征的一种预处理方法。降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定的信息损失范围内,可以为我们节省大量的时间和成本。降维也成为了应用非常广泛的数据预处理方法。

  降维具有如下一些优点:
(1)使得数据集更易使用
(2)降低算法的计算开销
(3)去除噪声
(4)使得结果容易理解

1.2 主要降维方法

1.2.1 主成分分析

  主成分分析,Principal Component Analysis,PCA。在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的。第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴的选择和第一个坐标轴正交且具有最大方差的方向。该过程一直重复,重复次数为原始数据中特征的数目。我们会发现,大部分方差都包含在最前面的几个新坐标轴中。因此,我们可以忽略余下的坐标轴,即对数据进行了降维处理。

1.2.2 因子分析

  因子分析,即Factor Analysis。在因子分析中,我们假设在观察数据的生成中有一些观察不到的隐变量(latent variable)。假设观察数据是这些隐变量和某些噪声的线性组合。那么隐变量的数据可能比观察数据的数目少,也就是说通过找到隐变量就可以实现数据的降维。因子分析已经应用于社会科学、金融和其他领域中了。

1.2.3 独立成分分析

  独立成分分析,即Independent Component Analysis,ICA。ICA假设数据是从 N 个数据源生成的,这一点和因子分析有些类似。假设数据为多个数据源的混合观察结果,这些数据源之间在统计上是相互独立的,而在PCA中只假设数据是不相关的。同因子分析一样,如果数据源的数目少于观察数据的数目,则可以实现降维过程。

二、主成分分析法

2.1 主成分分析法简介

  主成分分析方法,即PCA(principal Component Analysis),是一种使用最广泛的数据压缩算法。在PCA中,数据从原来的坐标系转换到新的坐标系,由数据本身决定。转换坐标系时,以方差最大的方向作为坐标轴方向,因为数据的最大方差给出了数据的最重要的信息。第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴选择的是与第一个新坐标轴正交且方差次大的方向……重复该过程,直至新坐标轴数量足够多。

  通过这种方式获得的新的坐标系,我们发现,大部分方差都包含在前面几个坐标轴中,后面的坐标轴所含的方差远小于前面的,。于是,我们可以忽略余下的坐标轴,只保留前面的几个含有绝大部分方差的坐标轴。事实上,这样也就相当于只保留包含绝大部分方差的维度特征,而忽略包含方差小的特征维度,也就实现了对数据特征的降维处理。

2.2 主成分分析法的数学推导

在此假设读者具有线性代数知识(若否,出门右转,这里可能不适合你!)

2.2.1 数据集

  记含有 n n 个数据点的数据集 X = { x 1 , x 2 , . . . , x n , | x i R m } ,其中,第 i i 个数据点为:

x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( m ) ) T , x i ( j ) R , j = 1 , 2 , . . . , m

假设 xi,i=1,2,...,n x i , i = 1 , 2 , . . . , n 已经中心化,否则,只需要每一个 xi x i 进行:

xixini=1xin x i ← x i − ∑ i = 1 n x i n

  进可以将第 j j 个维度的数据的中心与第 j 个坐标轴的原点重合,此时 X X 的中心与 R m 的原点重合,方便下面的推导。

  在 Rm R m 中标准正交基为 { e1,e2,...,em} { e 1 , e 2 , . . . , e m } ,其中, ei=(0,...,0,1i,0,...,0)T e i = ( 0 , . . . , 0 , 1 i , 0 , . . . , 0 ) T 。对于 xi x i 用标准正交基来线性表示为:

xi=x(1)ie1+x(2)ie2+...+x(m)iem x i = x i ( 1 ) e 1 + x i ( 2 ) e 2 + . . . + x i ( m ) e m

左右用 ej,j=1,2,...,m e j , j = 1 , 2 , . . . , m 分别作用,有标准正交基性质可知:
xi,ej=x(1)ie1+x(2)ie2+...+x(m)iem,ej=x(j)iej,ej=x(j)i ⟨ x i , e j ⟩ = ⟨ x i ( 1 ) e 1 + x i ( 2 ) e 2 + . . . + x i ( m ) e m , e j ⟩ = ⟨ x i ( j ) e j , e j ⟩ = x i ( j )

所以,对于 xi x i 可以写成:
xi=xi,e1e1+xi,e2e2+...+xi,emem x i = ⟨ x i , e 1 ⟩ e 1 + ⟨ x i , e 2 ⟩ e 2 + . . . + ⟨ x i , e m ⟩ e m

  于是, xi x i 在以 ej e j 为方向的坐标轴上的投影距离即为 xi,ej=xTiej ⟨ x i , e j ⟩ = x i T e j ,即是说, xi x i 在标准正交基 { e1,e2,...,em} { e 1 , e 2 , . . . , e m } 下第 j j 维的坐标为 x i T e j

2.2.2 新坐标系需要满足的条件

  现在需要取新的一组规范正交基 { ε1,ε2,...,εm} { ε 1 , ε 2 , . . . , ε m } 生成新的坐标轴系,使得原始数据 X={

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值