CODEVS 1073 家族 (并查集)

题目描述 Description

若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。 规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚。如果x,y是亲戚,那么x的亲戚都是y的亲戚,y的亲戚也都是x的亲戚。

输入描述 Input Description

第一行:三个整数n,m,p,(n<=5000,m<=5000,p<=5000),分别表示有n个人,m个亲戚关系,询问p对亲戚关系。 以下m行:每行两个数Mi,Mj,1<=Mi,Mj<=N,表示Ai和Bi具有亲戚关系。 接下来p行:每行两个数Pi,Pj,询问Pi和Pj是否具有亲戚关系。

输出描述 Output Description

P行,每行一个’Yes’或’No’。表示第i个询问的答案为“具有”或“不具有”亲戚关系。

样例输入 Sample Input

6 5 3

1 2

1 5

3 4

5 2

1 3

1 4

2 3

5 6

样例输出 Sample Output

Yes

Yes

No

#include <cstdio>
#include <cstring>
#define N 5010
int fa[N], deep[N];
int n, m, q;
void init(int n)
{
	for (int i = 1; i <= n; i++) fa[i] = i, deep[i] = 0;
}
int find(int x)
{
	if (fa[x] == x) return x;
	return fa[x] = find(fa[x]);
}
void unite(int x, int y)
{
	x = find(x); y = find(y);
	if (x == y) return;
	if (deep[x] < deep[y]) fa[x] = y;
	else
	{
		fa[y] = x;
		if (deep[x] == deep[y]) deep[x]++;
	}
}
bool same(int x, int y)
{
	return find(x) == find(y);
}
int main()
{
	scanf("%d%d%d", &n, &m, &q);
	init(n);
	int a, b;
	for (int i = 1; i <= m; i++)
	{
		scanf("%d%d", &a, &b);
		unite(a, b);
	}
	for (int i = 1; i <= q; i++)
	{
		scanf("%d%d", &a, &b);
		if (same(a, b)) printf("Yes\n");
		else printf("No\n");
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值