Math Reference Notes: 交叉相乘及其应用

交叉相乘是比例等式中一种基本且广泛使用的操作,通常用于将比例等式转换为乘法等式,从而简化问题的求解过程。它不仅适用于简单的比例关系,还可以扩展到包含多项式或变量的更复杂情况。


1. 交叉相乘的基本原理

1.1 比例等式的定义

首先,假设有以下比例等式:
a b = c d \frac{a}{b} = \frac{c}{d} ba=dc
其中 a , b , c , d a, b, c, d a,b,c,d 均为已知常数,且 b ≠ 0 b \neq 0 b=0 d ≠ 0 d \neq 0 d=0。比例等式表明两个比率相等,也可以理解为:
a ÷ b = c ÷ d a \div b = c \div d a÷b=c÷d
根据分数的等式性质,我们可以通过交叉相乘的方式将其转换为乘法等式。

1.2 交叉相乘

交叉相乘的操作是将比例等式两边的分子与分母相乘,得到一个新的乘法等式。具体地,从比例等式:
a b = c d \frac{a}{b} = \frac{c}{d} ba=dc
通过交叉相乘,得到:
a ⋅ d = b ⋅ c a \cdot d = b \cdot c ad=bc
这一等式是由比例等式推导出来的乘法等式,表明比例两边的对角线的乘积相等。

2. 为什么交叉相乘成立

交叉相乘的成立基于比例等式的基本性质,即若两个比率相等,那么它们的对角线乘积也必定相等。这一性质可以通过以下推导过程证明:

  1. 由比例等式 a b = c d \frac{a}{b} = \frac{c}{d} ba=dc,我们有:
    a ÷ b = c ÷ d a \div b = c \div d a÷b=c÷d
  2. 双方同时乘以 b ⋅ d b \cdot d bd,得到:
    a ⋅ d = b ⋅ c a \cdot d = b \cdot c ad=bc
    这就得到了交叉相乘的结果。

3. 交叉相乘的应用

交叉相乘不仅限于验证比例等式的正确性,它在解决比例方程、推导新的比例关系以及处理复杂比例问题时也具有广泛的应用。

3.1 解比例方程

交叉相乘常用于解比例方程。当比例方程中包含未知数时,通过交叉相乘可以将比例等式转化为一个简单的乘法等式,从而方便求解。

例子 1:

解比例方程:
x 4 = 3 6 \frac{x}{4} = \frac{3}{6} 4x=63
首先,通过交叉相乘得到:
x ⋅ 6 = 4 ⋅ 3 x \cdot 6 = 4 \cdot 3 x6=43
简化后:
6 x = 12 6x = 12 6x=12
解得:
x = 12 6 = 2 x = \frac{12}{6} = 2 x=612=2
因此,比例方程的解是 x = 2 x = 2 x=2

3.2 验证比例的正确性

交叉相乘也可以用于验证比例是否成立。对于给定的两个比例 a b \frac{a}{b} ba c d \frac{c}{d} dc,通过交叉相乘可以验证它们是否相等。

例子 2:

验证比例:
3 4 = 6 8 \frac{3}{4} = \frac{6}{8} 43=86
交叉相乘得到:
3 ⋅ 8 = 4 ⋅ 6 3 \cdot 8 = 4 \cdot 6 38=46
结果为:
24 = 24 24 = 24 24=24
因此,比例 3 4 = 6 8 \frac{3}{4} = \frac{6}{8} 43=86 是成立的。

3.3 处理含有变量或多项式的比例

对于含有变量或多项式的比例,交叉相乘同样适用。通过交叉相乘,可以将带有变量或多项式的比例等式转化为普通的乘法方程,进而简化求解过程。

例子 3:

解比例方程:
3 x + 2 5 = 7 x − 1 2 \frac{3x + 2}{5} = \frac{7x - 1}{2} 53x+2=27x1
交叉相乘得到:
( 3 x + 2 ) ⋅ 2 = 5 ⋅ ( 7 x − 1 ) (3x + 2) \cdot 2 = 5 \cdot (7x - 1) (3x+2)2=5(7x1)
展开并简化:
6 x + 4 = 35 x − 5 6x + 4 = 35x - 5 6x+4=35x5
将所有项移到一边得到:
6 x + 4 − 35 x + 5 = 0    ⟹    − 29 x + 9 = 0 6x + 4 - 35x + 5 = 0 \implies -29x + 9 = 0 6x+435x+5=029x+9=0
解得:
x = 9 29 x = \frac{9}{29} x=299
因此,比例方程的解为 x = 9 29 x = \frac{9}{29} x=299

3.4 推导新的比例关系

交叉相乘还可以用于推导出新的比例关系。在许多情况下,我们可以通过适当的重新组织比例等式的元素,得到新的比例关系。以下是一个应用交叉相乘推导出的新比例关系的例子:

例子 4:

给定比例:
a b c d = e f g h \frac{ab}{cd} = \frac{ef}{gh} cdab=ghef
根据交叉相乘原理,我们得到:
a b ⋅ g h = e f ⋅ c d ab \cdot gh = ef \cdot cd abgh=efcd
即:
a b g h = c d e f abgh = cdef abgh=cdef
此外,我们还可以通过重新组合比例的元素,得到以下新的比例关系:
a g c f = d e b h \frac{ag}{cf} = \frac{de}{bh} cfag=bhde
这种推导是交叉相乘在不同情境下的一种应用,它展示了交叉相乘操作的灵活性。

4. 交叉相乘的扩展与变换

4.1 处理带有变量的比例

交叉相乘的技巧同样适用于带有变量的比例等式。考虑以下比例:
x + 1 y − 2 = 3 4 \frac{x + 1}{y - 2} = \frac{3}{4} y2x+1=43
交叉相乘后得到:
4 ( x + 1 ) = 3 ( y − 2 ) 4(x + 1) = 3(y - 2) 4(x+1)=3(y2)
展开并简化:
4 x + 4 = 3 y − 6 4x + 4 = 3y - 6 4x+4=3y6
从中得到一个关于 x x x y y y 的方程,可以进一步求解。

4.2 处理多个比例式

在涉及多个比例式的情况下,交叉相乘同样有效。通过交叉相乘,可以将多个比例式的元素转化为乘法等式,从而简化问题的求解过程。

4.3 比例不等式的应用

交叉相乘还可以扩展到比例不等式的情况。若 a b < c d \frac{a}{b} < \frac{c}{d} ba<dc,则交叉相乘得到:
a ⋅ d < b ⋅ c a \cdot d < b \cdot c ad<bc
这种扩展使得交叉相乘不仅限于比例等式,还可以处理比例不等式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值