交叉相乘是比例等式中一种基本且广泛使用的操作,通常用于将比例等式转换为乘法等式,从而简化问题的求解过程。它不仅适用于简单的比例关系,还可以扩展到包含多项式或变量的更复杂情况。
1. 交叉相乘的基本原理
1.1 比例等式的定义
首先,假设有以下比例等式:
a
b
=
c
d
\frac{a}{b} = \frac{c}{d}
ba=dc
其中
a
,
b
,
c
,
d
a, b, c, d
a,b,c,d 均为已知常数,且
b
≠
0
b \neq 0
b=0 和
d
≠
0
d \neq 0
d=0。比例等式表明两个比率相等,也可以理解为:
a
÷
b
=
c
÷
d
a \div b = c \div d
a÷b=c÷d
根据分数的等式性质,我们可以通过交叉相乘的方式将其转换为乘法等式。
1.2 交叉相乘
交叉相乘的操作是将比例等式两边的分子与分母相乘,得到一个新的乘法等式。具体地,从比例等式:
a
b
=
c
d
\frac{a}{b} = \frac{c}{d}
ba=dc
通过交叉相乘,得到:
a
⋅
d
=
b
⋅
c
a \cdot d = b \cdot c
a⋅d=b⋅c
这一等式是由比例等式推导出来的乘法等式,表明比例两边的对角线的乘积相等。
2. 为什么交叉相乘成立
交叉相乘的成立基于比例等式的基本性质,即若两个比率相等,那么它们的对角线乘积也必定相等。这一性质可以通过以下推导过程证明:
- 由比例等式
a
b
=
c
d
\frac{a}{b} = \frac{c}{d}
ba=dc,我们有:
a ÷ b = c ÷ d a \div b = c \div d a÷b=c÷d - 双方同时乘以
b
⋅
d
b \cdot d
b⋅d,得到:
a ⋅ d = b ⋅ c a \cdot d = b \cdot c a⋅d=b⋅c
这就得到了交叉相乘的结果。
3. 交叉相乘的应用
交叉相乘不仅限于验证比例等式的正确性,它在解决比例方程、推导新的比例关系以及处理复杂比例问题时也具有广泛的应用。
3.1 解比例方程
交叉相乘常用于解比例方程。当比例方程中包含未知数时,通过交叉相乘可以将比例等式转化为一个简单的乘法等式,从而方便求解。
例子 1:
解比例方程:
x
4
=
3
6
\frac{x}{4} = \frac{3}{6}
4x=63
首先,通过交叉相乘得到:
x
⋅
6
=
4
⋅
3
x \cdot 6 = 4 \cdot 3
x⋅6=4⋅3
简化后:
6
x
=
12
6x = 12
6x=12
解得:
x
=
12
6
=
2
x = \frac{12}{6} = 2
x=612=2
因此,比例方程的解是
x
=
2
x = 2
x=2。
3.2 验证比例的正确性
交叉相乘也可以用于验证比例是否成立。对于给定的两个比例 a b \frac{a}{b} ba 和 c d \frac{c}{d} dc,通过交叉相乘可以验证它们是否相等。
例子 2:
验证比例:
3
4
=
6
8
\frac{3}{4} = \frac{6}{8}
43=86
交叉相乘得到:
3
⋅
8
=
4
⋅
6
3 \cdot 8 = 4 \cdot 6
3⋅8=4⋅6
结果为:
24
=
24
24 = 24
24=24
因此,比例
3
4
=
6
8
\frac{3}{4} = \frac{6}{8}
43=86 是成立的。
3.3 处理含有变量或多项式的比例
对于含有变量或多项式的比例,交叉相乘同样适用。通过交叉相乘,可以将带有变量或多项式的比例等式转化为普通的乘法方程,进而简化求解过程。
例子 3:
解比例方程:
3
x
+
2
5
=
7
x
−
1
2
\frac{3x + 2}{5} = \frac{7x - 1}{2}
53x+2=27x−1
交叉相乘得到:
(
3
x
+
2
)
⋅
2
=
5
⋅
(
7
x
−
1
)
(3x + 2) \cdot 2 = 5 \cdot (7x - 1)
(3x+2)⋅2=5⋅(7x−1)
展开并简化:
6
x
+
4
=
35
x
−
5
6x + 4 = 35x - 5
6x+4=35x−5
将所有项移到一边得到:
6
x
+
4
−
35
x
+
5
=
0
⟹
−
29
x
+
9
=
0
6x + 4 - 35x + 5 = 0 \implies -29x + 9 = 0
6x+4−35x+5=0⟹−29x+9=0
解得:
x
=
9
29
x = \frac{9}{29}
x=299
因此,比例方程的解为
x
=
9
29
x = \frac{9}{29}
x=299。
3.4 推导新的比例关系
交叉相乘还可以用于推导出新的比例关系。在许多情况下,我们可以通过适当的重新组织比例等式的元素,得到新的比例关系。以下是一个应用交叉相乘推导出的新比例关系的例子:
例子 4:
给定比例:
a
b
c
d
=
e
f
g
h
\frac{ab}{cd} = \frac{ef}{gh}
cdab=ghef
根据交叉相乘原理,我们得到:
a
b
⋅
g
h
=
e
f
⋅
c
d
ab \cdot gh = ef \cdot cd
ab⋅gh=ef⋅cd
即:
a
b
g
h
=
c
d
e
f
abgh = cdef
abgh=cdef
此外,我们还可以通过重新组合比例的元素,得到以下新的比例关系:
a
g
c
f
=
d
e
b
h
\frac{ag}{cf} = \frac{de}{bh}
cfag=bhde
这种推导是交叉相乘在不同情境下的一种应用,它展示了交叉相乘操作的灵活性。
4. 交叉相乘的扩展与变换
4.1 处理带有变量的比例
交叉相乘的技巧同样适用于带有变量的比例等式。考虑以下比例:
x
+
1
y
−
2
=
3
4
\frac{x + 1}{y - 2} = \frac{3}{4}
y−2x+1=43
交叉相乘后得到:
4
(
x
+
1
)
=
3
(
y
−
2
)
4(x + 1) = 3(y - 2)
4(x+1)=3(y−2)
展开并简化:
4
x
+
4
=
3
y
−
6
4x + 4 = 3y - 6
4x+4=3y−6
从中得到一个关于
x
x
x 和
y
y
y 的方程,可以进一步求解。
4.2 处理多个比例式
在涉及多个比例式的情况下,交叉相乘同样有效。通过交叉相乘,可以将多个比例式的元素转化为乘法等式,从而简化问题的求解过程。
4.3 比例不等式的应用
交叉相乘还可以扩展到比例不等式的情况。若
a
b
<
c
d
\frac{a}{b} < \frac{c}{d}
ba<dc,则交叉相乘得到:
a
⋅
d
<
b
⋅
c
a \cdot d < b \cdot c
a⋅d<b⋅c
这种扩展使得交叉相乘不仅限于比例等式,还可以处理比例不等式。