Problem
Given an integer array A, you partition the array into (contiguous) subarrays of length at most K. After partitioning, each subarray has their values changed to become the maximum value of that subarray.
Return the largest sum of the given array after partitioning.
Example 1:
Input: A = [1,15,7,9,2,5,10], K = 3
Output: 84
Explanation: A becomes [15,15,15,9,10,10,10]
Note:
- 1 <= K <= A.length <= 500
- 0 <= A[i] <= 10^6
解题思路
这一题的题目是告诉我们有一个数组,顺序切割成长度不超过
K
K
K的若干个子数组,对于每一个子数组中的数据都变为该子数组中的最大值,最后对所有的子数组进行求和,求可能的和的最大值。
比如说数组
[
1
,
15
,
7
,
9
,
2
,
5
,
10
]
[1,15,7,9,2,5,10]
[1,15,7,9,2,5,10],按照题意可以切割成
[
1
,
15
]
,
[
7
,
9
,
2
]
,
[
5
,
10
]
[1, 15], [7, 9, 2], [5, 10]
[1,15],[7,9,2],[5,10],将每个子数组进行变换,将数据变成每个子数组中的最大值,有
[
15
,
15
]
,
[
9
,
9
,
9
]
,
[
10
,
10
]
[15, 15], [9, 9, 9], [10, 10]
[15,15],[9,9,9],[10,10],最后求和,得到结果:77。
其实这道题目是一道典型的动态规划题目,对于这道题目,我们可以定义一个一维数组
d
p
dp
dp,其中
d
p
[
i
]
dp[i]
dp[i]表示前面
i
i
i个数据可以得到的最大的求和的值。很明显,我们需要对每一个位置
i
i
i的前面
K
K
K个位置依次进行扫描,分别计算可能得到的最大值,选择其中的最大值进行数据的更新。
代码如下:
class Solution:
def maxSumAfterPartitioning(self, A: List[int], K: int) -> int:
# 如果K的值大于数组的长度,则可以直接进行计算最后的结果
if len(A) <= K:
return max(A) * len(A)
dp = [0 for _ in range(len(A))]
dp[0] = A[0]
# 对前面K个数据,结果也是可以很容易计算出来
for i in range(1, K):
dp[i] = max(A[:i + 1]) * (i+1)
# 对于之后的数据
for i in range(K, len(A)):
# maximum保存可能的最大值
maximum = -1
# 对i之前的K个位置进行遍历,计算可能的最大值,和当前的maximum进行比较,选择较大的那一个
for j in range(0, K):
temp = max(A[i - j:i+1]) * (j + 1) + dp[i -j-1]
maximum = max(maximum, temp)
# 更新当前的计算结果
dp[i] = maximum
# 返回
return dp[-1]