# LeetCode解题分享：207. Course Schedule

##### Problem

There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:

Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

Note:

1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
2. You may assume that there are no duplicate edges in the input prerequisites.
##### 解题思路

虽然这一题在可以采用BFS的方式求解，但是更多时候，这一题还可以采用拓扑排序的方式求解。下面是一段可用的拓扑排序的代码。

我们首先定义了一个类来保存需要的数据，并在类中定义了需要的排序规则，然后我们对数据进行处理，利用堆排序，我们可以轻易地获取剩余元素中最小的那一个，然后将其指向的节点的入度减一，再在剩余的节点中重复操作。如果某一个最小的节点入度不为0，则表示出现了环，直接返回false。如果循环结束都没有返回，则直接返回true。

需要注意的是，这是一个拓扑排序的模板，在执行效率上不是最高效的做法。

代码如下：

class Course
{
public:
int id;
vector<int> next;
int inDegree;

bool operator<(const Course other) const
{
return this->inDegree > other.inDegree;
}
};

class Solution {
public:
bool canFinish(int numCourses, const vector<vector<int>>& prerequisites) {
vector<Course> course(numCourses);
for (int i = 0; i < numCourses; ++i)
{
course[i].inDegree = 0;
course[i].id = i;
}

for (auto& c : prerequisites)
{
course[c[1]].next.push_back(c[0]);
course[c[0]].inDegree++;
}

for (int i = 0; i < numCourses; ++i)
{
make_heap(course.begin() + i, course.end());
if (course[i].inDegree != 0)
{
return false;
}
for (auto& id : course[i].next)
{
for (int j = i + 1; j < numCourses; ++j)
{
if (course[j].id == id)
{
course[j].inDegree--;
}
}
}
}
return true;
}
};