人工智能-高等数学之导数篇

高等数学之导数篇

线性代数的学习基本就先告一个段落了,接着学最重要的微积分,高等数学里的重中之重,也是近代科学的发展利器,微积分主要包括包括极限、微分学、积分学及其应用,而微分学包括求导数的运算,是一套关于变化率的理论。研究函数的变化规律,推导事物发展的趋势走向是它的拿手好戏,印象里,上学时,学习的顺序是,数列,极限,函数,导数,微分,积分,当然也有很多数学家说先学积分,因为积分直观比较容易被理解。

1. 导数的定义

数学定义:设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某个邻域内有定义,当自变量 x x x x 0 x_0 x0处取得增量 Δ x \Delta x Δx时,相应的函数取得增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0);如果 Δ y \Delta y Δy Δ x \Delta x Δx之比当 Δ x → 0 \Delta x\rightarrow 0 Δx0时的极限存在,则称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可导,并称这个极限为函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的导数,记作 f ′ ( x 0 ) f^\prime(x_0) f(x0),即
f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f^\prime(x_0)=\lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim_{\Delta x \rightarrow 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)
也可以记作 y ′ ∣ x = x 0 , d y d x ∣ x = x 0 , d f ( x ) d x ∣ x = x 0 y^\prime \mid _{x=x_0}, \quad \frac{dy}{dx} \mid_{x=x_0},\quad\frac{df(x)}{dx} \mid_{x=x_0} yx=x0,dxdyx=x0,dxdf(x)x=x0

导数的实质:导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

2. 导函数的定义

函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可导也说成 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0具有导数或导数存在。
上面是讲在一个点上可导,如果函数 y = f ( x ) y=f(x) y=f(x)在一个区间内每一点都可导,也就是说如果函数 y = f ( x ) y=f(x) y=f(x)对每一点都有一个确定的导数值,那么就构成了一个新的函数,这个函数就叫做原函数的导函数,记作 f ′ ( x ) , y ′ , d y d x , d f ( x ) d x f^\prime(x), \quad y^\prime, \quad \frac{dy}{dx},\quad\frac{df(x)}{dx} f(x),y,dxdy,dxdf(x)导函数也简称导数,而 f ′ ( x 0 ) f^\prime(x_0) f(x0) f ( x ) f(x) f(x) x 0 x_0 x0处的导数,或导数 f ′ ( x ) f^\prime(x) f(x) x 0 x_0 x0处的值。
f ′ ( x ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f^\prime(x)=\lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim_{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} f(x)=Δx0limΔxΔy=Δx0limΔxf(x+Δx)f(x)

3. 常用的求导基本公式
  • C ′ = 0 , C ∈ R C^\prime=0,C \in R C=0,CR
  • ( n x ) ′ = n , n ∈ R (nx)^\prime=n,n \in R (nx)=n,nR
  • ( x n ) ′ = n x n − 1 , n ∈ R (x^n)^\prime=nx^{n-1},n \in R (xn)=nxn1,nR
  • ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)^\prime=\cos x (sinx)=cosx
  • ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)^\prime=-\sin x (cosx)=sinx

例题:求 1 x \frac{1}{x} x1的导数

解: ( 1 x ) ′ = ( x − 1 ) ′ = − x − 2 = − 1 x 2 (\frac{1}{x})^\prime=(x^{-1})^\prime=-x^{-2}=-\frac{1}{x^2} (x1)=(x1)=x2=x21

4. 求导基础法则

u = u ( x ) u=u(x) u=u(x) v = v ( x ) v=v(x) v=v(x)都可导,则

  • 加减法: ( u ± v ) ′ = u ′ ± v ′ (u\pm v)^\prime=u^\prime \pm v^\prime (u±v)=u±v
  • 乘法: ( u v ) ′ = u ′ v + u v ′ (uv)^\prime=u^\prime v+uv^\prime (uv)=uv+uv
  • 数乘: ( C v ) ′ = C v ′ (Cv)^\prime=Cv^\prime (Cv)=Cv
  • 除法: ( u v ) ′ = ( u ′ v − u v ′ ) v 2 (\frac{u}{v})^\prime =\frac{(u^\prime v-uv^\prime)}{v^2} (vu)=v2(uvuv)
  • 链式求导:
    u = u ( x ) u=u(x) u=u(x)在x点可导, y = f ( u ) y=f(u) y=f(u)在u点可导,则 y = f ( u ( x ) ) y=f(u(x)) y=f(u(x))在x点可导,其导数为: d y d x = d y d u d u d x \frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} dxdy=dudydxdu
  • 隐函数微分法:
    不容易表示为 y = f ( x ) y=f(x) y=f(x)的函数称为隐函数。
    例如:
    x 2 + y 2 = 1 , y > 0 , 求 d y d x ? x^2+y^2=1,y>0,求\frac{dy}{dx} ? x2+y2=1,y>0,dxdy?
    解:等式两侧同时对x求导
    ( x 2 ) ′ + ( y 2 ) ′ = 1 ′ 2 x + 2 y y ′ = 0 y ′ = − x y = − x 1 − x 2 (x^2)^\prime+(y^2)^\prime = 1^\prime \\ 2x+2yy^\prime=0 \\ y^\prime=\frac{-x}{y}=\frac{-x}{\sqrt{1-x^2}} (x2)+(y2)=12x+2yy=0y=yx=1x2 x
  • 指数函数的导数: ( a x ) ′ = a x l n a , a ∈ R (a^x)^\prime=a^xlna,a \in R (ax)=axlna,aR
5. 高阶导数

高阶导数就是导数的导数,它的意义大概就是变化率的变化率的无穷变化率。

  • 二阶导数: f ′ ′ f^{\prime\prime} f
  • 三阶导数: f ′ ′ ′ = ( d d x ) 3 f = d 3 f ( d x ) 3 = D 3 f f^{\prime\prime\prime}=(\frac{d}{dx})^3f=\frac{d^3f}{(dx)^3}=D^3f f=(dxd)3f=(dx)3d3f=D3f
  • 四阶导数: f ( 4 ) f^{(4)} f(4)
6. python计算代码
import sympy as sp

if __name__ == '__main__':
    # 定义自变量x,表示对x求导
    x = sp.symbols('x', real=True)

    f1 = 2*x + 1
    derivative = sp.diff(f1, x)
    print('f1=%s' % derivative)

    f2 = x**2+4
    derivative = sp.diff(f2, x)
    print('f2=%s' % derivative)

    f3 = sp.sin(x)
    derivative = sp.diff(f3, x)
    print('f3=%s' % derivative)

    # 求高阶导数
    f4 = x**10
    for n in range(1,12):
        # 计算n阶导数
        D = sp.diff(f4, x, n)
        print('D%d=%s' % (n, D))

运行截图:
运行截图

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
[本课程属于AI完整学习路线套餐,该套餐已“硬核”上线,点击立即学习!] 【为什么学习数学?】 人工智能的本质是数学,网上有很多AI课程,只蜻蜓点水的介绍一下算法背后的数学理论,知识点比较混乱,不成体系,学了以后一旦在实战遇到难点就不知道该怎么办了。比方说老师遇到过用很多层MLP预测用户转化率的工程师,只是单纯的追求模型的“复杂度”,而忘记了底层数学的本质回归问题超过3层神经网络足以拟合空间中任一曲线,耗费了大量的运算资源却造成了模型的过拟合。 很多同学因为不理解AI底层的数学和理论,知其然不知其所以然,遇到问题不知道如何从根源上去思考排查解决问题,而是花了大量时间做一个“调参侠”,期望蒙中一个优化组合,可是调参空间之巨大如果没有方向随机的搜索和买彩票一样。但是专门的数学课学习起来非常抽象和枯燥,而且其中大量内容和人工智能关系不大。因此在设计这门专为人工智能服务的数学课,讲解从人工智能用到的底层的数学逻辑,让大家可以真正理解数学知识。 【讲师介绍】 褚英昊  技术总监深造于美国圣地亚哥国家超级计算中心,毕业后归国曾服务于世界某500强中国区AI Lab,是人工智能+智能制造领域的专家。先后发表国际期刊21(其中SCI收录17),第一作者发明专利11份。【学习目标】 1、更加高效学习、更好的理解AI知识 2、在找工作中在众多的套工程的“调参侠”中脱颖而出,获得面试官的重视 3、在实际工作和开发中,遇到问题能理解问题的本质,真正做到精准而高效的解决问题,获得领导的倚重 【梳理数学与AI知识之间的关联】 【专门为数学设计的项目案例】
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值