Python 基于百分位法批量确定站点极端降水事件阈值
介绍
通常在定义极端事件中,我们采取绝对阈值法和相对阈值法。绝对阈值法就是我们规定某一定值,若该站点超过该值则判定发生极端事件。我国降水强度大致分为小雨、中雨、大雨和暴雨。其中,24h内降水量超过50mm统称为暴雨,我们就可以将50mm作为绝对阈值来识别暴雨事件。
而相对阈值法分为参数法与非参数法。非参数法目前最常见的是采用某个百分位值作为参考值,一旦超过该值即视为极端降水事件发生。
这里展示了通过百分位法来计算各个站点极端降水事件阈值的代码,仅供参考。
代码
导入库和数据
import pandas as pd
import math
#导入站点降水数据
#这里需要换成你站点数据的路径,我的是excel文件,可以根据你的文件类型进行替换
data =pd.read_excel('your_path/your_excel.xlsx')
del data['Unnamed: 0'] #删除导出数据时产生的index 其他数据无需此行
获取站点列表
station = data['Station']
station_list