Python 基于百分位法批量确定站点极端降水事件阈值

本文介绍了如何使用Python通过百分位法为各站点计算极端降水事件的阈值,通过预处理数据、循环遍历站点并应用95百分位作为参考,生成包含站点名和阈值的Excel文件示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python 基于百分位法批量确定站点极端降水事件阈值

介绍

通常在定义极端事件中,我们采取绝对阈值法和相对阈值法。绝对阈值法就是我们规定某一定值,若该站点超过该值则判定发生极端事件。我国降水强度大致分为小雨、中雨、大雨和暴雨。其中,24h内降水量超过50mm统称为暴雨,我们就可以将50mm作为绝对阈值来识别暴雨事件。

而相对阈值法分为参数法与非参数法。非参数法目前最常见的是采用某个百分位值作为参考值,一旦超过该值即视为极端降水事件发生。

这里展示了通过百分位法来计算各个站点极端降水事件阈值的代码,仅供参考。

代码

导入库和数据

import pandas as pd
import math

#导入站点降水数据
#这里需要换成你站点数据的路径,我的是excel文件,可以根据你的文件类型进行替换
data =pd.read_excel('your_path/your_excel.xlsx')	
del data['Unnamed: 0']   #删除导出数据时产生的index 其他数据无需此行

获取站点列表

station = data['Station']
station_list 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值