MXNET深度学习框架-07-从0开始实现多层感知机(MLP)

         多层感知机(multilayer perceptron,MLP)其实与逻辑回归没有太大的区别,主要就是在输入层和输出层之间加了几层隐层:
在这里插入图片描述
下面来实现一下这个网络:
PS:与上两章一样,依旧使用服饰类的mnist数据集。

1、数据集获取

mnist_train = gn.data.vision.FashionMNIST(train=True)
mnist_test = gn.data.vision.FashionMNIST(train=False)

2、数据读取

batch_size = 100
transformer = gn.data.vision.transforms.ToTensor()
train_data = gn.data.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True)
test_data = gn.data.DataLoader(dataset=mnist_test, batch_size=batch_size, shuffle=False)

3、初始化模型参数

num_input = 28 * 28 * 1
num_output = 10
num_hidden=256  # 隐藏层神经元个数
w1 = nd.random_normal(shape=(num_input, num_hidden),scale=0.01) # 初始化(0.01内的值)
b1 = nd.zeros(shape=(num_hidden))

w2 = nd.random_normal(shape=(num_hidden, num_output),scale=0.01)
b2 = nd.zeros(shape=(num_output))
params = [w1, b1,w2,b2]
for param in params:
    param.attach_grad()  # 开辟临时空间

4、激活函数
         如果我们使用线性操作符来构造神经网络,那么整个模型依旧是一个线性函数:
          Y = X ∗ W 1 ∗ W 2 = X ∗ W 3 Y=X*W_1*W_2=X*W_3 Y=XW1W2=XW3,这里 W 1 ∗ W 2 = W 3 W_1*W_2=W_3 W1W2=W3
         所以为了让模型可以拟合非线性函数,引入一个非线性激活函数:
          r e l u ( x ) = m a x ( x , 0 ) relu(x)=max(x,0) relu(x)=max(x,0)

def relu(x):
    return nd.maximum(0,x)

5、定义模型

def net(x):
    x=x.reshape(-1,num_input)
    h1=relu(nd.dot(x,w1)+b1)
    output=nd.dot(h1,w2)+b2 # 最后一层一般不做激活
    return output

6、定义准确率

# 定义准确率
def accuracy(output,label):
    return nd.mean(output.argmax(axis=1)==label).asscalar()

def evaluate_accuracy(data_iter,net):# 定义测试集准确率
    acc=0
    for data,label in data_iter:
        data,label=transform(data,label)
        output=net(data)
        acc+=accuracy(output,label)
    return acc/len(data_iter)

7、梯度下降优化器

def SGD(params,lr):
    for pa in params:
        pa[:]=pa-lr*pa.grad # 参数沿着梯度的反方向走特定距离

8、训练
(与前两章一样)

lr=0.5
epochs=20
for epoch in range(epochs):
    train_loss=0
    train_acc=0
    for image,y in train_data:
        image,y=transform(image,y) # 类型转换,数据归一化
        with ag.record():
            output=net(image)
            loss=cross_loss(output,y)
        loss.backward()
        # 将梯度做平均,这样学习率不会对batch_size那么敏感
        SGD(params,lr/batch_size)
        train_loss+=nd.mean(loss).asscalar()
        train_acc+=accuracy(output,y)
    test_acc=evaluate_accuracy(test_data,net)
    print("Epoch %d, Loss:%f, Train acc:%f, Test acc:%f"
          %(epoch,train_loss/len(train_data),train_acc/len(train_data),test_acc))

训练结果:
在这里插入图片描述
         可以看到,同样是训练20轮(与前两章比较),模型的准确率已经接近90%,可以说加入了隐层,分类效果确实较好。

9、预测
(与前两章一样)

# 训练完成后,可对样本进行预测
image_10,label_10=mnist_test[:10] #拿到前10个数据
show_image(image_10)
print("真实样本标签:",label_10)
print("真实数字标签对应的服饰名:",get_fashion_mnist_labels(label_10))

image_10,label_10=transform(image_10,label_10)
predict_label=net(image_10).argmax(axis=1)
print("预测样本标签:",predict_label.astype("int8"))
print("预测数字标签对应的服饰名:",get_fashion_mnist_labels(predict_label.asnumpy()))

预测结果:
在这里插入图片描述
在这里插入图片描述
附上所有源码:

import mxnet.autograd as ag
import mxnet.ndarray as nd
import mxnet.gluon as gn

def transform(data, label):
    return data.astype("float32") / 255, label.astype("float32")  # 样本归一化


mnist_train = gn.data.vision.FashionMNIST(train=True)
mnist_test = gn.data.vision.FashionMNIST(train=False)
data, label = mnist_train[0:9]
print(data.shape, label)  # 查看数据维度
import matplotlib.pyplot as plt


def show_image(image):  # 显示图像
    n = image.shape[0]
    _, figs = plt.subplots(1, n, figsize=(15, 15))
    for i in range(n):
        figs[i].imshow(image[i].reshape((28, 28)).asnumpy())
    plt.show()


def get_fashion_mnist_labels(labels):  # 显示图像标签
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

#
# show_image(data)
# print(get_fashion_mnist_labels(label))

'''----数据读取----'''
batch_size = 100
transformer = gn.data.vision.transforms.ToTensor()
train_data = gn.data.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True)
test_data = gn.data.DataLoader(dataset=mnist_test, batch_size=batch_size, shuffle=False)

'''----初始化模型参数----'''
num_input = 28 * 28 * 1
num_output = 10
num_hidden=256  # 隐藏层神经元个数
w1 = nd.random_normal(shape=(num_input, num_hidden),scale=0.01) # 初始化(0.01内的值)
b1 = nd.zeros(shape=(num_hidden))

w2 = nd.random_normal(shape=(num_hidden, num_output),scale=0.01)
b2 = nd.zeros(shape=(num_output))
params = [w1, b1,w2,b2]
for param in params:
    param.attach_grad()  # 开辟临时空间

# 定义激活函数relu
def relu(x):
    return nd.maximum(0,x)

'''----定义模型----'''
# 所谓的模型就是将全连接层与relu串起来
def net(x):
    x=x.reshape(-1,num_input)
    h1=relu(nd.dot(x,w1)+b1)
    output=nd.dot(h1,w2)+b2 # 最后一层一般不做激活
    return output


# softmax和交叉熵损失函数
# 由于将它们分开会导致数值不稳定(前两章博文的结果可以对比),所以直接使用gluon提供的API
cross_loss=gn.loss.SoftmaxCrossEntropyLoss()

# 定义准确率
def accuracy(output,label):
    return nd.mean(output.argmax(axis=1)==label).asscalar()

def evaluate_accuracy(data_iter,net):# 定义测试集准确率
    acc=0
    for data,label in data_iter:
        data,label=transform(data,label)
        output=net(data)
        acc+=accuracy(output,label)
    return acc/len(data_iter)

# 梯度下降优化器
def SGD(params,lr):
    for pa in params:
        pa[:]=pa-lr*pa.grad # 参数沿着梯度的反方向走特定距离

# 训练
lr=0.1
epochs=20
for epoch in range(epochs):
    train_loss=0
    train_acc=0
    for image,y in train_data:
        image,y=transform(image,y) # 类型转换,数据归一化
        with ag.record():
            output=net(image)
            loss=cross_loss(output,y)
        loss.backward()
        # 将梯度做平均,这样学习率不会对batch_size那么敏感
        SGD(params,lr/batch_size)
        train_loss+=nd.mean(loss).asscalar()
        train_acc+=accuracy(output,y)
    test_acc=evaluate_accuracy(test_data,net)
    print("Epoch %d, Loss:%f, Train acc:%f, Test acc:%f"
          %(epoch,train_loss/len(train_data),train_acc/len(train_data),test_acc))

'''----预测-------'''
# 训练完成后,可对样本进行预测
image_10,label_10=mnist_test[:10] #拿到前10个数据
show_image(image_10)
print("真实样本标签:",label_10)
print("真实数字标签对应的服饰名:",get_fashion_mnist_labels(label_10))

image_10,label_10=transform(image_10,label_10)
predict_label=net(image_10).argmax(axis=1)
print("预测样本标签:",predict_label.astype("int8"))
print("预测数字标签对应的服饰名:",get_fashion_mnist_labels(predict_label.asnumpy()))
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
                《人工智能:深度学习入门到精通实战》课程主要就人工智能领域相关的深度学习基础、深度学习计算、卷积神经网络+经典网络、循环神经网络+RNN进阶、优化算法、计算机视觉和自然语言处理等,配套实战案例与项目全部基于真实数据集与实际任务展开,结合深度学习框架进行建模实战。                由浅入深,每一个理论搭配一个实验,引领学员浸泡式逐步掌握各项技能和实战项目,且侧重技能不同,学员的知识体系会更加全面课程大纲:第一章:深度学习基础-深度学习简介01.1-前置知识01.2-传统编程与数据编程01.3-深度学习起源01.4-深度学习崛起与发展01.5-深度学习成功案例01.6-深度学习特点 第二章:深度学习基础-Python基础02.1-PyTorch介绍与环境配置02.2-数据操作与创建Tensor02.3-算术操作、索引与改变形状02.4-线性代数、广播机制与内存开销02.5-Tensor和NumPy相互转换与Tensor on GPU02.6-实验01-创建和使用Tensor-102.7-实验01-创建和使用Tensor-202.8-梯度下降02.9-实验02-梯度下降-102.10-实验02-梯度下降-202.11-自动求梯度概念02.12-自动求梯度实例02.13-实验03-自动求梯度-102.14-实验03-自动求梯度-2 第三章:深度学习基础-线性回归03.1-线性回归讲解03.2-线性回归实例03.3-实验04-从实现线性回归-103.4-实验04-从实现线性回归-203.5-实验05-线性回归的简洁实现-103.6-实验05-线性回归的简洁实现-2 第四章:深度学习基础-softmax回归04.1-softmax回归04.2-实验06-FashionMNIST04.3-实验07-从实现Softmax回归-104.4-实验07-从实现Softmax回归-204.5-实验08-softmax回归的简洁实现 第五章:深度学习基础-多层感知机05.1-感知机05.2-多层感知机05.3-多层感知机神经网络05.4-激活函数05.5-正向传播05.6-反向传播05.7-正向传播和反向传播05.8-批大小05.9-实验09-从实现MLP05.10-实验10-MLP的简洁实现 第六章:深度学习基础-模型选择、欠拟合和过拟合06.1-训练误差和泛化误差06.2-模型选择06.3-欠拟合和过拟合06.4-权重衰减06.5-丢弃法06.6-实验11-多项式函数拟合实验06.7-实验12-高维线性回归实验-106.8-实验12-高维线性回归实验-206.9-实验13-Dropout 第七章:深度学习基础-数值稳定性和模型初始化07.1-数值稳定性和模型初始化-107.2-数值稳定性和模型初始化-207.3-实验14-房价预测案例-107.4-实验14-房价预测案例-207.5-实验14-房价预测案例-3 第八章:深度学习计算-模型构造08.1-模型构造-108.2-模型构造-208.3-模型构造-308.4-实验15-模型构造-108.5-实验15-模型构造-2 第九章:深度学习计算-模型参数的访问、初始化和共享09.1-模型参数的访问09.2-模型参数初始化和共享09.3-实验16-模型参数-109.4-实验16-模型参数-2 第十章:深度学习计算-自定义层与读取和储存10.1-不含模型参数的自定义层10.2-含模型参数的自定义层10.3-实验17-自定义层10.4-读取和储存10.5-GPU计算10.6-实验18-读取和储存  第十一章:卷积神经网络11.01-卷积神经网络11.02-卷积神经网络的组成层11.03-图像分类的局限性11.04-二维卷积层与卷积层11.05-卷积在图像中的直观作用11.06-实验19-二维卷积层11.07-填充与步幅11.08-卷积过程11.09-卷积层参数-111.10-卷积层参数-211.11-实验20-Pad和Stride11.12-多输入和输出通道11.13-实验21-多通道11.14-池化层11.15-实验22-池化层 第十二章:经典网络12.01-卷积神经网络12.02-实验23-LeNet模型12.03-深度卷积神经网络12.04-实验24-AlexNet模型12.05-使用重复元素的网络12.06-实验25-VGG模型12.07-网络中的网络12.08-实验26-NiN模型12.09-含并行连接的网络12.10-实验27-GoogLeNet模型12.11-批量归一化-112.12-批量归一化-212.13-实验28-批量归一化12.14-残差网络12.15-实验29-残差网络12.16-稠密连接网络12.17-实验30-稠密连接网络 第十三章:循环神经网络13.01-语言模型和计算13.02-n元语法13.03-RNN和RNNs13.04-标准RNN向前输出流程和语言模型应用13.05-vector-to-sequence结构13.06-实验31-语言模型数据集-113.07-实验31-语言模型数据集-213.08-实验32-从实现循环神经网络-113.09-实验32-从实现循环神经网络-213.10-实验32-从实现循环神经网络-313.11-实验32-从实现循环神经网络-413.12-实验33-简洁实现循环神经网络-113.13-实验33-简洁实现循环神经网络-2 第十四章:RNN进阶14.01-通过时间反向传播-114.02-通过时间反向传播-214.03-长短期记忆-114.04-长短期记忆-214.05-实验34-长短期记忆网络-114.06-实验34-长短期记忆网络-214.07-门控循环单元14.08-RNN扩展模型14.09-实验35-门控循环单元 第十五章:优化算法15.01-优化与深度学习15.02-局部最小值和鞍点15.03-提高深度学习的泛化能力15.04-实验36-小批量梯度下降-115.05-实验36-小批量梯度下降-215.06-动量法-115.07-动量法-215.08-实验37-动量法15.09-AdaGrad算法与特点15.10-实验38-AdaGrad算法15.11-RMSrop算法15.12-实验39-RMSProp算法15.13-AdaDelta算法15.14-实验40-AdaDelta算法15.15-Adam算法15.16-实验41-Adam算法15.17-不用二阶优化讲解与超参数 第十六章:计算机视觉16.01-图像增广与挑战16.02-翻转、裁剪、变化颜色与叠加16.03-实验42-图像增广-116.04-实验42-图像增广-216.05-微调16.06-迁移学习16.07-实验43-微调-116.08-实验43-微调-216.09-目标检测16.10-边界框16.11-实验44-边界框16.12-锚框与生成多个锚框16.13-交并比16.14-实验45-生成锚框-116.15-实验45-生成锚框-216.17-标注训练集的锚框-116.18-标注训练集的锚框-216.19-实验46-标注训练集的锚框-116.20-实验46-标注训练集的锚框-216.21-实验46-标注训练集的锚框-316.22-输出预测边界框16.23-实验47-输出预测边界框-116.24-实验47-输出预测边界框-216.25-多尺度目标检测16.26-实验48-多尺度目标检测16.27-目标检测算法分类16.28-SSD与模型设计16.29-预测层16.30-损失函数16.31-SSD预测16.32-实验49-目标检测数据集16.33-实验50-SSD目标检测-116.34-实验50-SSD目标检测-216.35-实验50-SSD目标检测-316.36-实验50-SSD目标检测-416.37-实验50-SSD目标检测-516.38-实验50-SSD目标检测-6 第十七章:自然语言处理17.01-词嵌入和词向量17.02-神经网络模型17.03-跳字模型17.04-训练跳字模型17.05-连续词袋模型17.06-负采样17.07-层序softmax17.08-子词嵌入17.09-Fasttext模型17.10-全局向量的词嵌入17.11-实验51-word2vec之数据预处理-117.12-实验51-word2vec之数据预处理-217.13-实验52-word2vec之负采样-117.14-实验52-word2vec之负采样-217.15-实验53-word2vec之模型构建-117.16-实验53-word2vec之模型构建-217.17-实验54-求近义词和类比词-117.18-实验54-求近义词和类比词-217.19-实验55-文本情感分类RNN-117.20-实验55-文本情感分类RNN-217.21-实验55-文本情感分类RNN-317.22-实验55-文本情感分类RNN-417.23-TextCNN17.24-TextCNN流程17.25-实验56-文本情感分类textCNN-117.26-实验56-文本情感分类textCNN-217.27-Seq2Seq的历史与网络架构17.28-Seq2Seq的应用与存在的问题17.29-Attention机制与Bucket机制17.30-实验57-机器翻译之模型构建-117.31-实验57-机器翻译之模型构建-217.32-实验57-机器翻译之模型构建-317.33-实验58-机器翻译之训练评估-117.34-实验58-机器翻译之训练评估-217.35-实验58-机器翻译之训练评估-3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值