弦耕不辍(五)

36 篇文章 0 订阅
27 篇文章 0 订阅

2.3波形的频谱分析

在这里插入图片描述
s ~ ( t ) {\tilde{s}}(t) s~(t)的傅里叶变换是:

S ~ ( f ) = ∫ − ∞ ∞ s ~ ( t ) e − j 2 π f t d t = 1 2 μ ∑ k = 1 N { [ F c ( k , f ) s i n ( ϕ ( k , f ) ) − F s ( k , f ) c o s ( ϕ ( k , f ) ) ] + j [ F c ( k , f ) c o s ( ϕ ( k , f ) ) − F s ( k , f ) s i n ( ϕ ( k , f ) ) ] } ( 6 ) = ∑ k = 1 N 1 2 μ e − j ( ϕ ( k , f ) + π 2 ) ( F c ( k , f ) + j F s ( k , f ) ) ( 7 ) {\tilde{S}}(f)={\int}_{-\infty}^{\infty}{\tilde{s}}(t)e^{-j2{\pi}ft}{\mathrm{d}}t\\={\frac{1}{\sqrt{2{\mu}}}}{\sum}_{k=1}^{N}{\{[F_c(k,f)sin({\phi}(k,f))-F_s(k,f)cos({\phi}(k,f))]\\+j[F_c(k,f)cos({\phi}(k,f))-F_s(k,f)sin({\phi}(k,f))]\}}{\qquad}(6)\\={\sum}_{k=1}^{N}{\frac{1}{\sqrt{2{\mu}}}}e^{-j\Bigg({\phi}(k,f)+{\frac{\pi}{2}}\Bigg)}(F_c(k,f)+jF_s(k,f)){\qquad}(7)\\ S~(f)=s~(t)ej2πftdt=2μ 1k=1N{[Fc(k,f)sin(ϕ(k,f))Fs(k,f)cos(ϕ(k,f))]+j[Fc(k,f)cos(ϕ(k,f))Fs(k,f)sin(ϕ(k,f))]}(6)=k=1N2μ 1ej(ϕ(k,f)+2π)(Fc(k,f)+jFs(k,f))(7)

在这里插入图片描述
其中,

ϕ ( k , f ) = π p k 2 + π μ ( p k q k 2 T − 2 f ) 2 ( 8 ) F c ( k , f ) = C ( 2 μ ( p k q k 2 T − 2 f + μ k T ) ) − C ( 2 μ ( p k q k 2 T − 2 f + μ ( k − 1 ) T ) ) ( 9 ) F s ( k , f ) = S ( 2 μ ( p k q k 2 T − 2 f + μ k T ) ) − S ( 2 μ ( p k q k 2 T − 2 f + μ ( k − 1 ) T ) ) ( 10 ) {\phi}(k,f)={\frac{{\pi}p_k}{2}}+{\frac{\pi}{\mu}}({\frac{p_kq_k}{2T}}-2f)^2{\qquad}(8)\\ F_c(k,f)=C\Bigg(\sqrt{\frac{2}{\mu}}({\frac{p_kq_k}{2T}}-2f+{\mu}kT)\Bigg)- C\Bigg(\sqrt{\frac{2}{\mu}}({\frac{p_kq_k}{2T}}-2f+{\mu}(k-1)T)\Bigg){\qquad}(9)\\ F_s(k,f)=S\Bigg(\sqrt{\frac{2}{\mu}}({\frac{p_kq_k}{2T}}-2f+{\mu}kT)\Bigg)- S\Bigg(\sqrt{\frac{2}{\mu}}({\frac{p_kq_k}{2T}}-2f+{\mu}(k-1)T)\Bigg){\qquad}(10)\\ ϕ(k,f)=2πpk+μπ(2Tpkqk2f)2(8)Fc(k,f)=C(μ2 (2Tpkqk2f+μkT))C(μ2 (2Tpkqk2f+μ(k1)T))(9)Fs(k,f)=S(μ2 (2Tpkqk2f+μkT))S(μ2 (2Tpkqk2f+μ(k1)T))(10)
在这里插入图片描述
有关文献10和11,能够观察到信号(7)的频谱是由 N N N个子线性调频信号的频谱相复合。对于第 k k k个线性调频信号,设 f ’ = 2 ( p k q k 4 T − f ) f^’=2({\frac{p_kq_k}{4T}}-f) f=2(4Tpkqkf),则 z 1 = T 2 B ( f ’ + ( k − 1 ) B ) , z 2 = T 2 B ( f ’ + k B ) z_1={\sqrt{\frac{T}{2B}}}(f^’+(k-1)B),z_2={\sqrt{\frac{T}{2B}}}(f^’+kB) z1=2BT (f+(k1)B),z2=2BT (f+kB)。显然,中心频谱的幅度变化范围为 p k q k 4 T ∈ { ± 1 4 T } {\frac{p_kq_k}{4T}}{\in}{\{{\pm}{\frac{1}{4T}}\}} 4Tpkqk{±4T1}。当 p k q k p_kq_k pkqk p k − 1 q k − 1 p_{k-1}q_{k-1} pk1qk1的值不同时,邻近的频谱可能会发生重叠或者间断。每一个子线性调频信号的带宽为 B = μ T B={\mu}T B=μT,但是总的频带宽度 N B NB NB确实一直不变的。图三呈现了,有着相同系数的线性调频信号和总的脉冲宽度,但N却不同的频谱图。

在这里插入图片描述

一些数学公式的代码:



{\tilde{S}}(f)={\int}_{-\infty}^{\infty}{\tilde{s}}(t)e^{-j2{\pi}ft}{\mathrm{d}}t\\
={\frac{1}{\sqrt{2{\mu}}}}{\sum}_{k=1}^{N}{\{[F_c(k,f)sin({\phi}(k,f))-F_s(k,f)cos({\phi}(k,f))]\\
+j[F_c(k,f)cos({\phi}(k,f))-F_s(k,f)sin({\phi}(k,f))]\}}{\qquad}(6)\\=
{\sum}_{k=1}^{N}{\frac{1}{\sqrt{2{\mu}}}}e^{-j\Bigg({\phi}(k,f)
+{\frac{\pi}{2}}\Bigg)}(F_c(k,f)+jF_s(k,f)){\qquad}(7)\\



{\phi}(k,f)={\frac{{\pi}p_k}{2}}+{\frac{\pi}{\mu}}({\frac{p_kq_k}{2T}}-2f)^2{\qquad}(8)\\

F_c(k,f)=C\Bigg(\sqrt{\frac{2}{\mu}}({\frac{p_kq_k}{2T}}-2f+{\mu}kT)\Bigg)-
C\Bigg(\sqrt{\frac{2}{\mu}}({\frac{p_kq_k}{2T}}-2f+{\mu}(k-1)T)\Bigg){\qquad}(9)\\

F_s(k,f)=S\Bigg(\sqrt{\frac{2}{\mu}}({\frac{p_kq_k}{2T}}-2f+{\mu}kT)\Bigg)-
S\Bigg(\sqrt{\frac{2}{\mu}}({\frac{p_kq_k}{2T}}-2f+{\mu}(k-1)T)\Bigg){\qquad}(10)\\



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值