最佳解释推论

最佳解释推论(Inference to the Best Explanation)

对于我们看不见(又听不见、尝不到,也无法用内感官观察到)的东西,我们该如何去证明它们的存在呢?最重要的方法也许是这样的:有时我们合理地设定存在某种我们看不见的东西,以便去解释我们都认同其存在的其他事情。

比如,我们为什么相信原子的存在?我肯定看不到单个的原子,那我为什么有理由相信小到看不见的微粒的存在?因为原子理论能够解释事物。假定存在着原子,而且它们具有特定的结构,以及特定的互动、组合和聚集模式,我立刻就能解释跟物理世界有关的各种事情。所以,设定原子的存在使我能解释需要解释的事情,根据这一事实,我推论出原子的存在。

我们一直都在使用这种论证方法。虽然我看不见X光,但为何我相信它是存在的?因为这样做我就能够解释为何会有物体内部的图像(比如手骨)。为什么我相信一些太过遥远、不能用望远镜直接观测到的行星的存在?因为设定它们的存在,我就能够解释星光的闪烁。如果设定一些东西的存在,能帮助我们解释用其他方法无法解释的事物,我们就推论出这些事物的存在。这种论证模式十分普遍,哲学家称之为“最佳解释推论”。

关于最佳解释推论,在此要强调一下。我们可以合理地相信某事物,不仅是因为我们需要靠它提供某种解释,而是由于它能提供我们可以得到的最佳解释。比如,我为什么有理由相信病毒、细菌等各种我看不见的微生物存在?因为这样做我就能够解释人们为什么会生病。但是其他事物也解释得了这一现象,比如魔鬼。我可以相信魔鬼的存在,说:“人为什么会生病、死掉,是因为恶魔附体。”那么,我为什么不能合理地相信魔鬼的存在呢?这当然是一种可能的解释。但是我们能合理相信的可不是随便什么解释,而是能得到的最佳解释。

那么,关于疾病,我们有两种对立的解释,微生物理论和魔鬼理论。我们要想想,它们哪个能更好地解释疾病这一事实?哪个能更好地解释谁会患上哪种疾病,疾病是如何传播、治疗或治愈的?事实当然是,魔鬼理论无法很好地解释疾病,而微生物理论解释得很透彻,是更好的解释,所以我们有理由相信微生物的存在,而不是相信魔鬼的存在。这就是一个推论,它不只是随便什么解释的结论,而是最佳解释的。

好了,那么灵魂的存在呢?我们观察不到灵魂,但是现在二元论者也许有了一个论证灵魂存在的办法。二元论者要做的是,指出我们身上一些物理主义者无法解释或解释不好的东西。他会指出关于人的一些谜团或困惑,对此物理主义者一筹莫展,而只要我们成为二元论者就能加以解释。

但是存在这样的特性(feature)吗?有什么需要解释的东西是只有设定某种高于或超出肉体的、某种非物质的东西,即灵魂,才能够解释的吗?有什么是要用灵魂的存在来解释,而且比局限在肉体的分析解释得更好的吗?我们不妨把这种特性叫作F特性,那我们可以说:“瞧,虽然我们看不见灵魂,但我们有理由相信灵魂,因为设定灵魂的存在能帮助我们解释F特性的存在,而这种特性是我们都承认的。”

举个例子,假定我们无法从物理主义者的视角解释爱情。我们都知道人们会坠入爱河,但假定物理主义者解释不了这一点,而设定灵魂的存在我们就能够解释它。轰,我们证明了灵魂的存在。这是最佳解释推论的一个例子。

现在关键的问题是,那个相关的F特性是什么?有没有这种物理主义者无法解释,或者只能很蹩脚地加以解释的特性,以致我们需要诉诸某种超物理的东西去解释它?有没有一种诉诸某种非物质对象就能更好地加以解释的东西?如果我们能找到那个F特性,指出物理主义者无法解释它,或者解释得很牵强附会,而二元论者能更合理地加以解释,我们就有理由相信灵魂。当然,同哲学中的所有论证一样,这只是一个试探性的论证。如果最后出现一个关于F特性更好的解释,我们就得放弃对灵魂的信念。但在那之前(当然它可能永远都不会出现),我们至少有些理由相信灵魂。

所以我要问的是:F特性可能是什么?存在这样的特性吗?

关于我们,有什么是只有诉诸灵魂才能很好地解释的吗? 我们将考虑许多可能的不同提议。其中每一个都需要分别加以考察,因为它们都指向一个截然不同的潜在论证。毕竟,最佳解释推论不是单一的、独特的灵魂存在论的化名词;它是某种类型的论证的总称。根据你用何种F来代入讨论,以及你诉诸灵魂要去解释哪种特征或事实,你就会得到不同的论证。事实上,此类论证各不相同,有一些值得我们斟酌。

还要补充一点,虽然我认为这多种论证都值得斟酌,但这并不意味着我认为它们都真的成立(work)。实际上,我已经说了,我本人不相信灵魂的存在。因此,在进行这些论证时,我会声明自己没有被说服,对此你不用感到惊讶。我认为这些灵魂存在的论证是站不住脚的,并希望你思考过之后,最终会同意我的看法。我希望你得出结论说,这些论证其实是不成立的。

但更重要的是,你至少思考过了所有的论证。这到底是不是令人信服的灵魂存在的论证呢?如果你认为是,对于我将给出的各种反驳,你会做出什么回应?不然的话,如果你赞同这个或者那个论证不成立,还有没有你认为更好的灵魂存在的论证呢?

### 关于算法渐进时间复杂度的推论规则 #### 时间复杂度定义 时间复杂度描述的是算法执行所需的时间随输入规模变化的趋势。通常使用大O表示法来表达,忽略低阶项和系数[^3]。 #### 推论规则 1. **加法规则** 如果一段代码由多个部分组成,则整体的时间复杂度等于各部分的最大者。例如,在顺序结构中,如果一部分是`O(n)`而另一部分是`O(log n)`,那么整个程序的时间复杂度应取较大的那个,即`O(n)`[^4]。 2. **乘法规则** 对于嵌套循环的情况,内层循环体被执行外层循环次数乘以内层自身的迭代次数。比如双重for循环会形成平方级别的复杂度`O(n^2)`;如果是三层甚至更多层次的嵌套,则依次类推为立方级乃至更高次幂的形式。 3. **对数性质的应用** 当存在二分查找或其他形式的数据分割操作时(每次都将数据集减半),其对应的复杂度通常是`O(log n)`。这是因为每一步都能使待处理的数据量缩小一半,直到达到最小单位为止。 4. **线性关系识别** 单一循环遍历数组或列表等序列化存储结构的操作属于典型的线性时间复杂度`O(n)`案例。只要是没有额外条件分支影响到访问模式的一维简单循环都可视为此类。 5. **常数量级判断** 不依赖于任何参数大小就能完成的任务被视作具有恒定时间消耗特性,记做`O(1)`。这类函数无论输入多寡始终维持固定开销不变。 ```python def constant_example(): return 42 # 这里返回一个固定的数值,不涉及输入规模的变化 ``` 6. **多项式的简化原则** 计算最终的大O标记时只保留最高次项并去除前面的比例因子。例如对于形如`T(n)=an^k+bn^(k-1)+...+c`这样的多项式表达式而言,只需关注首项即可得出近似的结果`O(n^k)`。 7. **递归调用分析方法** 使用主定理(master theorem)或者其他专门针对特定类型的递归方程求解技巧来进行精确估算。这涉及到如何拆分子问题以及合并子解决方案所花费的成本等因素考量[^1]。 8. **特殊情况说明** 存在某些特殊情形下,即使引入了外部因素像宇宙学中的Λ值也不会改变基本的增长趋势。也就是说,除非该附加成分直接作用到了核心逻辑内部从而改变了原有的运算机制,否则一般不影响原本设定好的理论框架内的分类归属。 9. **最坏/最佳情况区分** 实际应用当中往往更加重视最糟糕状况下的表现指标作为衡量标准之一,因为这样能确保系统性能底线得到保障。当然也存在着平均情况下更为乐观估计的情形,具体取决于应用场景需求差异。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值