断弦

36 篇文章 0 订阅
27 篇文章 0 订阅

在这里插入图片描述
在这里插入图片描述

A A A延时分辨率最后:

条件 B T ≥ 1 BT{\geq}1 BT1不满足的话,那么等式 17 17 17是不能被近似成为等式 18 18 18的。这时,是很难得到一个很精确的延时分辨率的表达式,但是在下一个部分的仿真里面显示了零多普勒主切片的主波瓣的宽度和等式 18 18 18的结果是一致的,即延时分辨率依旧是 1 N B {\frac{1}{NB}} NB1 。随着 N N N的增长,接近主波瓣的子波瓣会被压缩得越来越多,这会导致提高对邻近频率较弱信号的检测。

B B B多普勒分辨率

假设模糊函数没有延时切片,即令 τ = 0 , {\tau}=0, τ=0,然后我们可以得出

X ( 0 , f d ) = ∑ i = − N N − 1 { r e c t ( − i ) ⋅ ∑ l = 1 N [ ∫ ( l − 1 ) T ( l + i ) T r e c t ( t N T ) f ( l + i , l , t ) d t + ∫ ( l + i ) T l T r e c t ( t N T ) f ( l + i + 1 , l , t ) d t ] } ( 19 ) {\Chi}(0,f_d)={\sum\limits_{i=-N}^{N-1}}{\Bigg\{rect(-i) {\cdot}{\sum\limits_{l=1}^{N}}\Big[{\int\limits_{(l-1)T}^{(l+i)T}}rect({\frac{t}{NT}})f(l+i,l,t){\mathrm{d}}t+{\int\limits^{lT}_{(l+i)T}}rect({\frac{t}{NT}})f(l+i+1,l,t){\mathrm{d}}t \Big]\Bigg\}}{\qquad}(19) X(0,fd)=i=NN1{rect(i)l=1N[(l1)T(l+i)Trect(NTt)f(l+i,l,t)dt+(l+i)TlTrect(NTt)f(l+i+1,l,t)dt]}(19)

注意到,如果在等式 19 19 19中,如果 i = 0 , r e c t ( − i ) = 1 i=0,rect(-i)=1 i=0,rect(i)=1,将这两个条件代入到等式 19 19 19中,我们会得到以下结果:

X ( 0 , f d ) = ∑ l = 1 N ∫ ( l − 1 ) T l T f ( l , l , t ) d t = T ⋅ s i n c ( f d T ) ∑ l = 1 N e j π f d T ( 2 l − 1 ) = T ⋅ s i n c ( f d T ) e j π f d T 1 − e j π f d N T 1 − e j π f d T ( 20 ) {\Chi}(0,f_d)={\sum\limits_{l=1}^{N}}{\int\limits^{lT}_{(l-1)T}}f(l,l,t){\mathrm{d}}t\\=T{\cdot}sinc(f_dT){\sum\limits_{l=1}^{N}}e^{j{\pi}f_dT(2l-1)}\\{\qquad} =T{\cdot}sinc(f_dT)e^{j{\pi}f_dT}{\frac{1-e^{j{\pi}f_dNT}}{1- e^{j{\pi}f_dT}}}{\qquad}(20) X(0,fd)=l=1N(l1)TlTf(l,l,t)dt=Tsinc(fdT)l=1NejπfdT(2l1)=Tsinc(fdT)ejπfdT1ejπfdT1ejπfdNT(20)

然后

∣ X ( 0 , f d ) ∣ = ∣ N T ⋅ s i n c ( N T f d ) ∣ |{\Chi}(0,f_d)|=|NT{\cdot}sinc(NTf_d)| X(0,fd)=NTsinc(NTfd)

所以,多普勒分辨率是 1 N T {\frac{1}{NT}} NT1 ,即,多普勒速度最低分辨率为 λ 2 N T . {\frac{\lambda}{2NT}}. 2NTλ. 因此,多普勒分辨率仅仅与总的脉冲宽度有关,和为序列与线性调频信号的系数无关

{\Chi}(0,f_d)={\sum\limits_{i=-N}^{N-1}}{\Bigg\{rect(-i)\\
{\cdot}{\sum\limits_{l=1}^{N}}\Big[{\int\limits_{(l-1)T}^{(l+i)T}}rect({\frac{t}{NT}})f(l+i,l,t){\mathrm{d}}t
+{\int\limits^{lT}_{(l+i)T}}rect({\frac{t}{NT}})f(l+i+1,l,t){\mathrm{d}}t
\Big]\Bigg\}}
{\qquad}(19)



{\Chi}(0,f_d)={\sum\limits_{l=1}^{N}}{\int\limits^{lT}_{(l-1)T}}f(l,l,t){\mathrm{d}}t//
=T{\cdot}sinc(f_dT){\sum\limits_{l=1}^{N}}e^{j{\pi}f_dT(2l-1)}//
=T{\cdot}sinc(f_dT)e^{j{\pi}f_dT}{\frac{1-e^{j{\pi}f_dNT}}{1-e^{j{\pi}f_dT}}}
{\qquad}(20)



|{\Chi}(0,f_d)|=|NT{\cdot}sinc(NTf_d)|



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值