ZSL多个session

在高通的 CamX(Camera Architecture eXtension)框架中,ZSL(Zero Shutter Lag)场景通常会创建多个 session,主要是为了满足实时预览离线处理的不同需求。这种多 session 架构可以提高数据处理的灵活性,尤其是在复杂的多帧处理(如 HDR、夜景、ZSL 快门)等场景中。


📸 1. CamX 中的 ZSL 多 Session 结构

在 ZSL 场景中,CamX 通常会创建以下两种 session:

Session 类型用途特性
Real-time Session处理 实时预览实时帧捕获- 低延迟、持续捕获、推送到缓冲区
Offline Session处理 离线 ZSL 帧,例如快门按下后的帧选择- 处理 ZSL 缓冲区,执行复杂算法(如 HDR)

🔍 2. ZSL 多 Session 的工作流程

以下是高通 CamX 框架中 ZSL 多 session 典型的工作逻辑:

实时预览阶段(Real-time Session)
  • Pipeline:实时 Pipeline 负责采集传感器数据并输出到 Surface。
  • Buffer:持续将预览帧写入 ZSL Ring Buffer,例如最新 10-20 帧。
  • 特点
    • 持续采集,低延迟
    • 只执行轻量级 ISP 处理(如 AWB、AE、AF)
    • 不进行复杂图像增强
快门按下 (Shutter Trigger)
  • Frame Picking:Anchor Frame 选择逻辑触发,挑选最优 ZSL 帧:
    • AE、AWB、AF 收敛状态
    • ISO、曝光参数最佳帧
    • 优先选择不需要 Flash 的帧
    • 时间接近快门瞬间的最佳帧
  • Session 切换:将选定的帧送入 Offline Session 进行高级处理。
离线处理阶段 (Offline Session)
  • Pipeline:Offline Pipeline 对选定 ZSL 帧执行更复杂的图像增强(如 HDR、夜景、降噪)。
  • 输出:最终处理结果输出为 JPEG 文件或其他格式,供相册或分享使用。

📊 3. CamX 中多 Session 结构的实现

在 CamX 框架代码中,主要涉及以下核心组件:

模块功能
Session管理多条 Pipeline,处理实时与离线任务。
Pipeline定义数据流处理,实时与离线使用不同 Pipeline。
ImageBufferManager负责 ZSL 缓冲区的管理与回收。
ZSLFrameSelectorZSL 帧选择逻辑,决定最佳 Anchor Frame。
OfflineProcessing触发 Offline Session,处理复杂图像任务。

📂 常见代码位置(以 Android 14 + Qualcomm 平台为例)

  • Session 创建camxsession.cpp
  • ZSL 管理camximagebuffermanager.cpp
  • Anchor Frame 选择camxanchorpicker.cpp

📌 4. 为什么 CamX 采用多 Session 处理 ZSL?

  1. 解耦实时与离线任务

    • 实时任务(Real-time Session)要求低延迟,只能执行基本处理。
    • 离线任务(Offline Session)可以用更多时间处理复杂算法(如多帧合成、超级夜景)。
  2. 提高系统效率

    • 预览与拍照分离,避免快门按下时阻塞预览。
    • 通过 ZSL Ring Buffer 记录关键帧,按需处理,降低功耗。
  3. 支持多种模式

    • 实时预览、快门捕获、离线 HDR、夜景、4K 视频拍摄等复杂场景。

📋 5. 代码路径定位 (Qualcomm CamX in Android 14)

  1. Session 初始化

     

    cpp

    CopyEdit

    CamX::Session* pSession = CamX::Session::CreateSession();

  2. ZSL Buffer 设置

     

    cpp

    CopyEdit

    pZSLBufferManager->Initialize(ZSL_BUFFER_DEPTH);

  3. Anchor Frame 选择逻辑

     

    cpp

    CopyEdit

    BOOL ZSLFrameSelector::IsValidFrame(Buffer* pFrame) { if (pFrame->IsAEConverged() && !pFrame->IsFlashRequired()) { return TRUE; } return FALSE; }


📚 6. 相关文档

  • Qualcomm Camera Subsystem Reference Manual
  • CamX Source Code (Android 14)
<think>好的,我需要回答用户关于零样本学习(ZSL)的定义和介绍。首先,根据用户提供的引用资料,我需要整合这些信息,确保准确性和相关性。 用户引用了三个来源:[^1]、[^2]和[^3]。其中,[^2]提到ZSL旨在在没有任何标注数据的情况下识别新类别,而则详细介绍了ZSL的概念、方法和应用场景。我需要结合这些信息,给出一个清晰的定义。 首先,ZSL的核心定义是让模型在没有目标类别标注数据的情况下进行识别。这与传统监督学习不同,传统方法需要大量标注数据。ZSL通过属性、语义描述或知识图谱等辅助信息来传递知识,帮助模型理解新类别。[^2]和都强调了这一点。 接下来,需要介绍ZSL的基本原理。根据,ZSL通常将样本映射到共享的语义空间,例如使用属性或词向量。例如,通过训练数据中的可见类别,模型学习将图像特征与语义属性关联,然后应用于不可见类别。 然后,应用场景部分,可以引用[^6]提到的图像分类、物体检测和自然语言处理。此外,[^1]提到的SAM模型结合ZSL可能用于图像分割,这也是一个应用实例。 面临的挑战方面,[^3]提到语义鸿沟问题,即低层特征与高层语义的不匹配。同时,指出ZSL依赖辅助信息的质量,这也是需要注意的点。 需要确保使用正确的中文术语,避免技术术语错误。同时,按照用户要求,行内公式用$...$,独立公式用$$...$$。例如,提到嵌入函数时可以用$f: \mathcal{X} \to \mathcal{S}$。 最后,生成相关问题时要围绕ZSL的定义、原理、应用和挑战展开,确保问题有针对性,帮助用户进一步学习。 检查引用标注是否自然,例如在提到应用场景时引用[^6],但用户提供的引用中没有[^6],可能需要调整。根据用户提供的引用,引用应限制在、、。因此需要修正引用,确保准确。 总结步骤: 1. 定义ZSL,引用和。 2. 解释原理,包括语义空间映射。 3. 应用场景,引用和。 4. 挑战,引用。 5. 生成相关问题,覆盖定义、方法、应用、挑战。 现在组织语言,确保结构清晰,符合用户要求的中文回答,并正确使用引用标注。</think>### 零样本学习(ZSL)的定义与介绍 **零样本学习(Zero-Shot Learning, ZSL)** 是一种机器学习范式,其核心目标是让模型能够识别或分类在训练阶段**从未见过标注数据的新类别**。这一方法通过利用类别之间的语义关联(如属性、文本描述、知识图谱等)来实现知识迁移,从而解决传统监督学习对大量标注数据的依赖问题。 #### 1. ZSL的核心思想 ZSL假设模型在训练时可以访问两类信息: - **可见类别(Seen Classes)**:带有标注数据的已知类别。 - **语义描述(Semantic Descriptions)**:所有类别(包括可见和不可见)的辅助信息,例如: - 属性(如“有翅膀”“会飞”描述鸟类); - 词向量(Word Embedding); - 知识图谱中的关系。 模型通过学习可见类别的数据与语义描述之间的映射关系,泛化到**不可见类别(Unseen Classes)**的推理任务中。 #### 2. ZSL的形式化表示 假设输入空间为$\mathcal{X}$,语义空间为$\mathcal{S}$,类别标签集合为$\mathcal{Y} = \mathcal{Y}^s \cup \mathcal{Y}^u$($s$为可见,$u$为不可见)。ZSL的目标是学习一个映射函数: $$f: \mathcal{X} \to \mathcal{S} \to \mathcal{Y}^u$$ 即先将输入(如图像)映射到语义空间,再通过语义匹配预测不可见类别的标签。 #### 3. ZSL的典型应用场景 - **图像分类**:识别训练数据中未出现的新物种或物体。 - **自然语言处理**:处理未标注的词汇或领域[^3]。 - **跨模态任务**:例如结合文本描述生成图像(如DALL·E)。 #### 4. ZSL的挑战 - **语义鸿沟(Semantic Gap)**:低层特征(如像素)与高层语义(如属性)的匹配困难。 - **领域偏移(Domain Shift)**:可见类别和不可见类别的特征分布差异导致泛化能力下降。 - **对辅助信息的强依赖**:语义描述的质量直接影响模型性能。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值