强大的Lora绘图模型使用-StableDiffusion

前置教程

本地玩AI绘画 | StableDiffusion安装到绘画 – 土拨鼠原创教程

下载Lora模型

来到Civitai.com 模型站,随机抽取下载一个Lora模型,如图我下载的模型名为

XHSCrazyGirIDesign_v240919b_r64.safetensors,需要这个Lora模型的 点击下载=> https://pan.quark.cn/s/3bc176feaa19

80b47d2f-d777-4a41-bd72-24c3312eab48

开始使用

这里需要讲解下,lora模型是需要结合主模型使用的,无法单独使用,上图可以看到显示的Base Model为SD1.5,但是实际上点开一张图片可以看到实际这个主模型是需要realisian_v60,这个realisian_v60在上篇娇嗔我已经提供。

image

将下载的Lora模型XHSCrazyGirIDesign_v240919b_r64.safetensors 放置到 stable-diffusion-webui\models\Lora中,如图

2505b84f-33b3-4851-a7de-5bb89ed264fd

然后启动StableDiffusionWebUI,首先要在最左上角选择Lora对应的主模型->realisian_v60.safetensors,然后点击下面的Lora,再点击 XHSCrazyGirIDesign_v240919b_r64,即可看到,这个Lora会自动在Prompt区域填充lora标签

bec0c56b-2702-4910-bfdf-614747ce6317

这次我们还是只写一个提示词girl,然后生成,结果如下,可以看到,已经是lora风格的绘图了

386dbfae-5c6e-49fa-9106-db94a9dfc99b

如果要想和lora模型介绍绘制出一样的效果,如何做呢?在模型下载处,有的官方会提供一些提示词,如图

f9e22547-3274-4a71-b8d0-b415d82c0c3a

我们将提示词复制粘贴到prompt框中,然后这里建议将Schedule type设置Karras,Karras是一个写实的偏真人使用的,再次点击生成,效果如下

aa23edb7-1825-4a37-95e6-c4a069f271f0

疑问

在上面我们使用主模型+lora模型生成了想要的图片,但是细心的同学会发现,人物的面部和手指绘制的比较混乱, 这个问题是AI绘画领域中常见的,下篇教程幽络源将提供StableDiffusion的面部修复配置教程

查看下节教程-StableDiffusion的脸部修复与换表情配置教程

StableDiffusion的脸部修复与换表情-幽络源土拨鼠原创

### LoRA模型AI绘图中的应用 #### 应用场景概述 LoRA模型,即低秩适应大型语言模型,在AI绘图领域有着独特的优势。这种模型能够作为Stable Diffusion的一个插件存在,仅需少量数据即可完成训练过程[^1]。由于其体积较小且易于定制化的特点,使得众多开发者和艺术家们可以根据具体需求创建各种类型的LoRA模型来增强图像生成效果。 #### 实现方式详解 ##### 数据准备阶段 为了使LoRA模型更好地服务于特定风格或主题下的图片创作,通常需要收集一定量的相关素材作为训练集的一部分。这些素材应当尽可能覆盖目标应用场景内的多种变化形式,比如不同角度的人物肖像照片、具有代表性的风景画作片段等。 ##### 训练流程说明 当准备好足够的高质量样本之后,便可以通过微调的方式让预训练好的大模型学习到新的特征表示方法。对于LoRA而言,这一过程中最重要的是调整那些负责捕捉细微差别的参数部分,而保持其他大部分权重不变,以此确保整体架构稳定的同时引入个性化元素。 ```python from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") # Load the LoRA model into pipeline lora_model_path = "./path_to_your_lora_model.safetensors" def load_lora_weights(pipeline, lora_path): from safetensors.torch import load_file as safe_load state_dict = safe_load(lora_path) for key in list(state_dict.keys()): if 'text_encoder' not in key and 'unet' not in key: del state_dict[key] pipeline.unet.load_state_dict(state_dict) load_lora_weights(pipe, lora_model_path) prompt = "A fantasy landscape with mountains and rivers." image = pipe(prompt=prompt).images[0] image.show() ``` 此段代码展示了如何加载并应用于已有的Stable Diffusion管道中,通过指定路径读取外部保存的LoRA权重文件,并将其融入现有网络结构里以影响最终输出结果的质量与特色[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值