数据结构与算法(七)AVL树

AVL树是一种自平衡二叉查找树,由Adelson-Velsky和Landis于1962年提出,确保任何节点的两个子树高度差不超过1,从而保证操作效率。当插入或删除节点导致不平衡时,通过LL、LR、RR、RL四种旋转方式恢复平衡。本文深入探讨AVL树的平衡性质和旋转策略。
摘要由CSDN通过智能技术生成

1、概述

AVL树由两位科学家在1962年发表的论文《An algorithm for the organization of information》当中提出,其命名来自于它的发明者G.M. Adelson-Velsky和E.M. Landis的名字缩写。

AVL树是最先发明的自平衡二叉查找树,也被称为高度平衡树。相比于二叉查找树,它的特点是:任何节点的两个子树的最大高度差为1。
在这里插入图片描述
上面的两张图片,左边的是AVL树,它的任何节点的两个子树的高度差别都<=1;而右边的不是AVL树,因为7的两颗子树的高度相差为2(以2为根节点的树的高度是3,而以8为根节点的树的高度是1)。

对于一般的二叉搜索树,其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度O(log2n)同时也由此而决定。但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n)。我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉。这同时也会造成树的平衡性受到破坏,提高它的操作的时间复杂度。

例如:我们按顺序将一组数据1,2,3,4,5,6分别插入到一颗空二叉查找树和AVL树中,插入的结果如下图:

在这里插入图片描述
由上图可知,同样的结点,由于插入方式不同导致树的高度也有所不同。特别是在带插入结点个数很多且正序的情况下,会导致二叉树的高度是O(N),而AVL树就不会出现这种情况,树的高度始终是O(lgN)。高度越小,对树的一些基本操作的时间复杂度就会越小。

AVL树不仅是一颗二叉查找树,它还有其他的性质。如果我们按照一般的二叉查找树的插入方式可能会破坏AVL树的平衡性。同理,在删除的时候也有可能会破坏树的平衡性,所以我们要做一些特殊的旋转处理来重新恢复平衡。

2、旋转
如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。下面给出它们的示意图:

在这里插入图片描述
上图中的4棵树都是"失去平衡的AVL树",从左往右的情况依次是:LL、LR、RL、RR。除了上面的情况之外,还有其它的失去平衡的AVL树,如下图:
在这里插入图片描述
上面的两张图都是为了便于理解,而列举的关于"失去平衡的AVL树"的例子。总的来说,AVL树失去平衡时的情况一定是LL、LR、RL、RR这4种之一,它们都由各自的定义:

LL:LeftLeft,也称为"左左"。插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
例如,在上面LL情况中,由于"根节点(8)的左子树(4)的左子树(2)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)“高2。
LR:LeftRight,也称为"左右”。插入或删除一个节点后,根节点的左子树的右子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
例如,在上面LR情况中,由于"根节点(8)的左子树(4)的左子树(6)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)“高2。
RL:RightLeft,称为"右左”。插入或删除一个节点后,根节点的右子树的左子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
例如,在上面RL情况中,由于"根节点(8)的右子树(12)的左子树(10)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)“高2。
RR:RightRight,称为"右右”。插入或删除一个节点后,根节点的右子树的右子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
例如,在上面RR情况中,由于"根节点(8)的右子树(12)的右子树(14)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)"高2。
如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。AVL失去平衡之后,可以通过旋转使其恢复平衡,下面分别介绍"LL(左左),LR(左右),RR(右右)和RL(右左)"这4种情况对应的旋转方法。

2.1 LL的旋转
LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。如下图:
在这里插入图片描述
图中左边是旋转之前的树,右边是旋转之后的树。从中可以发现,旋转之后的树又变成了AVL树,而且该旋转只需要一次即可完成。

对于LL旋转,你可以这样理解为:LL旋转是围绕"失去平衡的AVL根节点"进行的,也就是节点k2;而且由于是LL情况,即左左情况,就用手抓着"左孩子,即k1"使劲摇。将k1变成根节点,k2变成k1的右子树,“k1的右子树"变成"k2的左子树”。

2.2 RR的旋转
理解了LL之后,RR就相当容易理解了。RR是与LL对称的情况!RR恢复平衡的旋转方法如下:
在这里插入图片描述
图中左边是旋转之前的树,右边是旋转之后的树。RR旋转也只需要一次即可完成。

2.3 LR的旋转
LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。如下图:

7.png

第一次旋转是围绕"k1"进行的"RR旋转",第二次是围绕"k3"进行的"LL旋转"。

2.4 RL的旋转
RL是与LR的对称情况!RL恢复平衡的旋转方法如下:

8.png

第一次旋转是围绕"k3"进行的"LL旋转",第二次是围绕"k1"进行的"RR旋转"。

3、实例

/**
 * - @author chenlongfei
 */
public class AVLTree {
   

    public AVLTreeNode root; // 根结点

    /**
     * - 插入操作的入口 
     * - @author chenlongfei 
     * - @param insertValue
     */
    public void insert(long insertValue) {
   
        root = insert(root, insertValue);
    }

    /**
     * - 插入的地递归实现
     * <p>
     * - @author chenlongfei
     * <p>
     * - @param subTree
     * <p>
     * - @param insertValue
     * <p>
     * - @return
     */
    private AVLTreeNode insert(AVLTreeNode subTree, long insertValue) {
   
        if (subTree == null) {
   
            return new AVLTreeNode(insertValue, null, null);
        }

        if (insertValue < subTree.value) {
    // 插入左子树

            subTree.left = insert(subTree.left, insertValue);
            if (unbalanceTest(subTree)) {
    // 插入后造成失衡
                if (insertValue < subTree.left.value) {
   
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值