[蓝桥杯][基础练习VIP]2n皇后问题
时间限制: 1Sec 内存限制: 128MB 提交: 225 解决: 117
题目描述
给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
输入
输入的第一行为一个整数n,表示棋盘的大小。
接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
输出
输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
解题思路
和把皇后的思想一样,不明白八皇后的可以百度一下,主要在于,对位置的判断,不在行列对角线,且不是0;
采用逐行放置的方式放置皇后,如果这行所有点都不成立,则回溯到上一行,将上一行中的皇后后移一位,
(第一种走法不成功,第二种走法,第二种走法和第一种走法失败之前是一样的。)
我用的回溯+递归,用DFS是一样的。
递归是回溯在代码中的实现。
注意:先放置黑皇后,后放置白皇后,放置的时候,要多一个判断,这个位置上是否已经放置了黑皇后。
完整代码
#include<iostream>
#include <math.h>
using namespace std;
int N;//棋盘大小
int nn[8][8];//棋盘
int black[8];//黑皇后放置的位置
int white[8];//白--
int ans=0;//个数
bool panduan(int n,int wb[])
{
for(int i=0;i<n;i++)//放置行与之前已经所有行进行比较
{
if((wb[i]==wb[n])||(abs(n-i)==abs(wb[n]-wb[i])))//因为是逐行放置,所以只用判断列和对角线
return false;
}
return true;
}
void startwhite(int n)
{
if(n==N)
ans++;
else
{
for(int i=0;i<N;i++)
if(black[n]!=i && nn[n][i]!=0)//加一层判断,是否该位上有黑皇后
{
white[n] = i;
if( panduan(n,white) )
{
startwhite(n+1);
}
}
}
}
void startblack(int n)
{
if(n==N)
startwhite(0);
else
for(int i=0;i<N;i++)//循环列数
if(nn[n][i]!=0)//该位上0/1
{
black[n] = i;//记录这一行的皇后放置的列数
if( panduan(n,black) )
startblack(n+1);//放置下一个,否则准备回溯
}
}
int main(){
cin>>N;
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
cin>>nn[i][j];
startblack(0);//从0行开始
cout<<ans;//全局变量
return 0;
}