题意:题目很长不说了,就是求加几条边后,任意删除一条边后,图还是联通的
思路:边双联通分量的定义就是删除一条边后图仍联通,这里推荐这篇点这里写的很详细,而这题就是推荐文章中的构造双联通图中桥的方法,那么我们直接引用,证明看那篇文章把,对于一个联通图,我们求出所有桥,求桥的方法与割点类似,都是求出low和dfs数组完成,我的代码中是L和E数组,将桥删除后的图肯定是多个联通块,而每个块肯定是一个双联通子图,这由桥的定义可以看出来,然后将每一块缩成一个点,连起来后找到度为1的点的个数+1再除2就是结果,推荐文章中有证明
#include <vector>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=1050;
vector<int>G[maxn];
int L[maxn],cnt[maxn],vis[maxn];
int n,m,k;
void dfs(int x,int fa){
vis[x]=1;L[x]=k++;
for(unsigned int i=0;i<G[x].size();i++){
int t=G[x][i];
if(t==fa) continue;
if(!vis[t]) dfs(t,x);
L[x]=min(L[x],L[t]);
}
}
int tarjan(){
k=0;dfs(1,1);
for(int i=1;i<=n;i++){
for(unsigned int j=0;j<G[i].size();j++){
int t=G[i][j];
if(L[i]!=L[t]){
cnt[L[i]]++;
}
}
}
int ans=0;
for(int i=1;i<=n;i++){
if(cnt[i]==1) ans++;
}
return (ans+1)/2;
}
int v[maxn][maxn];
int main(){
int a,b;
while(scanf("%d%d",&n,&m)!=-1){
for(int i=0;i<maxn;i++){
G[i].clear();cnt[i]=0;
}
memset(vis,0,sizeof(vis));
for(int i=0;i<m;i++){
scanf("%d%d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
int ans=tarjan();
printf("%d\n",ans);
}
return 0;
}
看了一篇大神的博客,才知道只用low数组并不能判断两个点是否在同一个双联通分量中,需要用栈弹出的方式,还不是很懂,但代码改掉了
#include <vector>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=1050;
vector<int>G[maxn];
int L[maxn],cnt[maxn],vis[maxn],E[maxn],stack1[maxn];
int n,m,k,kk;
void dfs(int x,int fa){
vis[x]=1;L[x]=k;E[x]=k++;stack1[kk++]=x;
for(unsigned int i=0;i<G[x].size();i++){
int t=G[x][i];
if(t!=fa){
if(!vis[t]){
dfs(t,x);
L[x]=min(L[x],L[t]);
}else L[x]=min(L[x],E[t]);
}
}
if(L[x]==E[x]){
while(stack1[kk]!=x&&kk>0){
L[stack1[kk-1]]=L[x];
kk--;
vis[stack1[kk]]=0;
}
}
}
int tarjan(){
memset(E,0,sizeof(E));
kk=0;k=1;dfs(1,1);
for(int i=1;i<=n;i++){
for(unsigned int j=0;j<G[i].size();j++){
int t=G[i][j];
if(L[i]!=L[t]){
cnt[L[i]]++;
}
}
}
int ans=0;
for(int i=1;i<=n;i++){
if(cnt[i]==1) ans++;
}
return (ans+1)/2;
}
int v[maxn][maxn];
int main(){
int a,b;
while(scanf("%d%d",&n,&m)!=-1){
for(int i=0;i<maxn;i++){
G[i].clear();cnt[i]=0;
}
memset(vis,0,sizeof(vis));
for(int i=0;i<m;i++){
scanf("%d%d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
int ans=tarjan();
printf("%d\n",ans);
}
return 0;
}