题意:给了n个点和m个圆心,在用不多于k个圆的情况下,使得所有的点被覆盖,最小的圆半径多大
思路:问最小的什么什么那么用二分准没错,那么二分条件是什么呢,就是用不多于K的圆能否将所有点覆盖,覆盖这部分就是裸的舞蹈链的可重复覆盖,行为m个圆,列为n个点,然后求出的最少行小于等于K,则成立,否则不成立
#include <math.h>
#include <vector>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3fll;
const int maxn=310;
const double eps=1e-8;
int L[maxn*maxn],R[maxn*maxn],U[maxn*maxn],D[maxn*maxn];//节点的上下左右四个方向的链表
int C[maxn*maxn],H[maxn],cnt[maxn],vis[maxn];//C列H行cnt列链表中元素个数
int n,m,id,fans,K;
void init(int lll){
for(int i=0;i<=lll;i++){
cnt[i]=0;U[i]=D[i]=i;
L[i+1]=i;R[i]=i+1;
}
R[lll]=0;id=lll+1;
memset(H,-1,sizeof(H));
}
void Link(int r,int c){
cnt[c]++;C[id]=c;
U[id]=U[c];D[U[c]]=id;
D[id]=c;U[c]=id;
if(H[r]==-1) H[r]=L[id]=R[id]=id;
else{
L[id]=L[H[r]];R[L[H[r]]]=id;
R[id]=H[r];L[H[r]]=id;
}
id++;
}
void Remove(int Size){
for(int j=D[Size];j!=Size;j=D[j])
L[R[j]]=L[j],R[L[j]]=R[j];
}
void Resume(int Size){
for(int j=D[Size];j!=Size;j=D[j])
L[R[j]]=R[L[j]]=j;
}
int h(){
int sum=0;
memset(vis,0,sizeof(vis));
for(int i=R[0];i;i=R[i]){
if(vis[i]) continue;
sum++;
for(int j=D[i];j!=i;j=D[j]){
for(int k=R[j];k!=j;k=R[k])
vis[C[k]]=1;
}
}
return sum;
}
void Dance(int k){
int mm=maxn,pos;
if(k+h()>=fans) return;
if(!R[0]){
if(k<fans) fans=k;
return;
}
for(int i=R[0];i;i=R[i])
if(mm>cnt[i]) mm=cnt[i],pos=i;
for(int i=D[pos];i!=pos;i=D[i]){
Remove(i);
for(int j=R[i];j!=i;j=R[j]) Remove(j);
Dance(k+1);
for(int j=R[i];j!=i;j=R[j]) Resume(j);
Resume(i);
}
}
int A[110][2],B[110][2];
double calcdis(int i,int j){
double ttt=(A[i][0]-B[j][0])*(A[i][0]-B[j][0]);
double ppp=(A[i][1]-B[j][1])*(A[i][1]-B[j][1]);
double ans=sqrt(ttt+ppp);
return ans;
}
bool judge(double mid){
init(n);fans=K+1;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
double ttt=calcdis(i,j);
if(ttt<=mid) Link(j,i);
}
}
Dance(0);
if(fans<=K) return 1;
else return 0;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&m,&K);
for(int i=1;i<=n;i++) scanf("%d%d",&A[i][0],&A[i][1]);
for(int i=1;i<=m;i++) scanf("%d%d",&B[i][0],&B[i][1]);
double le=0,ri=10000.0;
while(ri-le>eps){
double mid=(le+ri)/2;
if(judge(mid)) ri=mid;
else le=mid;
}
printf("%.6lf\n",ri);
}
return 0;
}