最短路径/旅行商简化版

本文探讨了旅行商问题的简化版本——Bitonic Tour,它要求在平面内的点之间找到最短的哈密尔顿回路。同时介绍了另一道与路径相关的最短路径问题,要求在特定条件和限制下找到从一个点到另一个点再返回的最短路径。文章通过动态规划策略来解决这两个问题,并提供了样例解释和数据范围。
摘要由CSDN通过智能技术生成

旅行商简化版

Description

【题目背景】 
  欧几里德旅行商(Euclidean Traveling Salesman)问题也就是货郎担问题一直是困扰全世界数学家、计算机学家的著名问题。现有的算法都没有办法在确定型机器上在多项式时间内求出最优解,但是有办法在多项式时间内求出一个较优解。
  为了简化问题,而且保证能在多项式时间内求出最优解,J.L.Bentley提出了一种叫做bitonic tour的哈密尔顿环游。它的要求是任意两点(a,b)之间的相互到达的代价dist(a,b)=dist(b,a)且任意两点之间可以相互到达,并且环游的路线只能是从最西端单向到最东端,再单项返回最西端,并且是一个哈密尔顿回路。 
【问题描述】
  著名的NPC难题的简化版本
  现在笛卡尔平面上有n(n<=1000)个点,每个点的坐标为(x,y)(-2^31 < x,y<2^31,且为整数),任意两点之间相互到达的代价为这两点的欧几里德距离,现要你编程求出最短bitonic tour。 注意:任意两点X不相同。

Input

  第一行一个整数n
  接下来n行,每行两个整数x,y,表示某个点的坐标。
  输入中保证没有重复的两点,
  保证最西端和最东端都只有一个点。

Output

  一行,即最短回路的长度,保留2位小数

Sample Input

7 0 6 1 0 2 3 5 4 6 1 7 5 8 2

Sample Output

25.58

最短路径

Description

  平面内给出 n 个点,记横坐标最小的点为 A,最大的点为 B࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值