多项式除法

多项式除法(取模)

已知次数为 n n n A ( x ) A(x) A(x),次数为 m m m B ( x ) B(x) B(x),求使得 A ( x ) = B ( x ) C ( x ) + D ( x ) A(x)=B(x)C(x)+D(x) A(x)=B(x)C(x)+D(x) C ( x ) , D ( x ) C(x),D(x) C(x),D(x)
由题 C ( x ) C(x) C(x)的次数为 n − m n-m nm D ( x ) D(x) D(x)的次数为 m − 1 m-1 m1
考虑将系数颠倒过来。
A R ( x ) = x n A ( 1 x ) A^R(x)=x^nA(\frac{1}{x}) AR(x)=xnA(x1)
x n A ( 1 x ) = x m B ( 1 x ) x n − m C ( 1 x ) + x n − m + 1 x m − 1 D ( 1 x ) A R ( x ) = B R ( x ) C R ( x ) + x n − m + 1 D R ( x ) A R ( x ) ≡ B R ( x ) C R ( x ) ( m o d x n − m + 1 ) C R ( x ) ≡ B R ( x ) − 1 A R ( x ) ( m o d x n − m + 1 ) x^nA(\frac{1}{x})=x^mB(\frac{1}{x})x^{n-m}C(\frac{1}{x})+x^{n-m+1}x^{m-1}D(\frac{1}{x})\\ A^R(x)=B^R(x)C^R(x)+x^{n-m+1}D^R(x)\\ A^R(x)\equiv{B^R(x)C^R(x)}\pmod{x^{n-m+1}}\\ C^R(x)\equiv{B^R(x)^{-1}A^R(x)}\pmod{x^{n-m+1}}\\ xnA(x1)=xmB(x1)xnmC(x1)+xnm+1xm1D(x1)AR(x)=BR(x)CR(x)+xnm+1DR(x)AR(x)BR(x)CR(x)(modxnm+1)CR(x)BR(x)1AR(x)(modxnm+1)
多项式求逆就可解决

代码 P4512

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int g=3;
const int mod=998244353; 
const int M=2100009;
int read(){
	int f=1,re=0;char ch;
	for(ch=getchar();!isdigit(ch)&&ch!='-';ch=getchar());
	if(ch=='-'){f=-1,ch=getchar();}
	for(;isdigit(ch);ch=getchar()) re=(re<<3)+(re<<1)+ch-'0';
	return re*f;
}
int ksm(int a,int b){
	int ans=1;
	while(b){
		if(b&1) ans=(ll)ans*a%mod;
		a=(ll)a*a%mod;
		b>>=1;
	}return ans%mod;
}
int n,m,r[M],aa[M],bb[M],a[M],b[M],invb[M],c[M],d[M],tmp[M],aaa[M],bbb[M];
void ntt(int *A,int lim,int type){
	for(int i=0;i<lim;i++) if(i<r[i]) swap(A[i],A[r[i]]);
	for(int mid=1;mid<lim;mid<<=1){
		int W=ksm(g,(mod-1)/(mid<<1));
		for(int R=mid<<1,j=0;j<lim;j+=R){
			int w=1;
			for(ll k=0;k<mid;k++,w=(ll)w*W%mod){
				int x=A[j+k],y=(ll)w*A[j+k+mid]%mod;
				A[j+k]=(x+y)%mod;
				A[j+mid+k]=(x-y+mod)%mod;
			}
		}
	}
	if(type==-1){
		reverse(A+1,A+lim);
        int inv=ksm(lim,mod-2);
        for(int i=0;i<lim;i++) A[i]=(ll)A[i]*inv%mod;
	}
}
void getinv(int a[],int b[],int len){
	if(len==1){
		b[0]=ksm(a[0],mod-2);
		return;
	}getinv(a,b,(len+1)>>1);
	int lim=1,l=0;
	while(lim<len+len) lim<<=1,l++;
	for(int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
	for(int i=0;i<len;i++) tmp[i]=a[i];
    for(int i=len;i<lim;i++) tmp[i]=0;
	ntt(tmp,lim,1),ntt(b,lim,1);
	for(int i=0;i<lim;i++) b[i]=(ll)b[i]*((2-(ll)tmp[i]*b[i]%mod+mod)%mod)%mod;
	ntt(b,lim,-1);
	for(int i=len;i<lim;i++) b[i]=0;
}
void getmul(int a[],int b[],int c[],int n,int m){
	int lim=1,l=0;
    while(lim<=n+m) lim<<=1,l++;
    for(int i=1;i<lim;i++) r[i]=(r[i>>1]>>1|(i&1)<<(l-1));
    for(int i=0;i<=n;i++) aa[i]=a[i];
    for(int i=0;i<=m;i++) bb[i]=b[i];
    ntt(aa,lim,1),ntt(bb,lim,1);
    for(int i=0;i<lim;i++){
        c[i]=(ll)aa[i]*bb[i]%mod;
        aa[i]=bb[i]=0;
    }ntt(c,lim,-1);
}
void getdiv(int a[],int b[],int c[],int d[],int n,int m){
	for(int i=0;i<=n;i++) aaa[i]=a[i];
	for(int i=0;i<=m;i++) bbb[i]=b[i];
	reverse(aaa,aaa+n+1),reverse(bbb,bbb+m+1);
	getinv(bbb,invb,n-m+1);
	getmul(aaa,invb,c,n-m,n-m);
	reverse(c,c+n-m+1);
    reverse(aaa,aaa+n+1);reverse(bbb,bbb+m+1);
    getmul(c,bbb,d,n-m,m);
    for(int i=0;i<m;i++) d[i]=(aaa[i]-d[i]+mod)%mod;
    for(int i=0;i<=n;i++) aaa[i]=0;
	for(int i=0;i<=m;i++) bbb[i]=0;
}
signed main(){
	n=read(),m=read();
	for(int i=0;i<=n;i++) a[i]=read();
	for(int i=0;i<=m;i++) b[i]=read();
	getdiv(a,b,c,d,n,m);
	for(int i=0;i<=n-m;i++) printf("%d ",c[i]);
    printf("\n");
    for(int i=0;i<m;i++) printf("%d ",d[i]);
    printf("\n");
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值