P4389-EGF

P4389

题目描述

题目描述

题解

我们写出每一件商品的生成函数:
F i ( x ) = 1 + x v i + x 2 v i + . . . = 1 1 − x v i F_i(x)=1+x^{v_i}+x^{2v_i}+...=\frac{1}{1-x^{v_i}} Fi(x)=1+xvi+x2vi+...=1xvi1
那么将所有 F ( x ) F(x) F(x)乘起来就是答案的生成函数:
G ( x ) = ∏ i = 1 m ( 1 1 − x i ) a i G(x)=\prod\limits_{i=1}^m(\frac{1}{1-x^i})^{a_i} G(x)=i=1m(1xi1)ai
i i i表示体积, a i a_i ai表示体积为 i i i的商品数量。
直接乘的复杂度是 O ( m n l o g n ) O(mnlogn) O(mnlogn),显然会爆炸的。

考虑把乘法转化为加法,我们对每个多项式取 ln ⁡ \ln ln,将系数加起来,再exp回去,则有:
ln ⁡ G ( x ) = ∑ i = 1 m a i ln ⁡ 1 ( 1 − x i ) \ln G(x)=\sum\limits_{i=1}^ma_i\ln\frac{1}{(1-x^i)}\\ lnG(x)=i=1mailn(1xi)1
因此算法的瓶颈在于取 l n ln ln,由于形式比较特殊,所以有:
ln ⁡ 1 1 − x k = ∑ i = 0 ∞ 1 i x i k \ln\frac{1}{1-x^k}=\sum\limits_{i=0}^{\infty}\frac{1}{i}x^{ik} ln1xk1=i=0i1xik
证明如下:
A ( x ) = 1 1 − x k , B ( x ) = ln ⁡ F ( x ) A(x)=\frac{1}{1-x^k},B(x)=\ln F(x) A(x)=1xk1B(x)=lnF(x)
B ′ ( x ) = A ′ ( x ) A ( x ) = ( 1 − x k ) ∑ i = 0 ∞ k ∗ i ∗ x k i − 1 = ∑ i = 0 ∞ k ∗ [ i − ( i − 1 ) ] ∗ x k i − 1 = ∑ i = 0 ∞ k ∗ x k i − 1 B ( x ) = ∑ i = 0 ∞ 1 i x i k B'(x)=\frac{A'(x)}{A(x)}=(1-x^k)\sum\limits_{i=0}^{\infty}k*i*x^{ki-1}=\sum\limits_{i=0}^{\infty}k*[{i-(i-1)}]*x^{ki-1}=\sum\limits_{i=0}^{\infty}k*x^{ki-1}\\ B(x)=\sum\limits_{i=0}^{\infty}\frac{1}{i}x^{ik} B(x)=A(x)A(x)=(1xk)i=0kixki1=i=0k[i(i1)]xki1=i=0kxki1B(x)=i=0i1xik
那么原式就可以化简为:
ln ⁡ G ( x ) = ∑ i = 1 m a i ∑ j ∗ i ≤ m 1 j x i j \ln G(x)=\sum\limits_{i=1}^ma_i\sum\limits_{j*i\le m}\frac{1}{j}x^{ij}\\ lnG(x)=i=1maijimj1xij
那么这样的时间复杂度就优化到了 O ( m ln ⁡ m ) O(m\ln m) O(mlnm)
最后再exp回去,总时间复杂度 O ( m log ⁡ m ) O(m\log m) O(mlogm)

代码

#include<bits/stdc++.h>
#define ll long long 
using namespace std;
const int g=3;
const int mod=998244353; 
const int M=2100009;
char s;
int read(){
	int f=1,re=0;char ch;
	for(ch=getchar();!isdigit(ch)&&ch!='-';ch=getchar());
	if(ch=='-'){f=-1,ch=getchar();}
	for(;isdigit(ch);ch=getchar()) re=(re<<3)+(re<<1)+ch-'0';
	return re*f;
}
int ksm(int a,int b){//快速幂 
	int ans=1;
	while(b){
		if(b&1) ans=(ll)ans*a%mod;
		a=(ll)a*a%mod;
		b>>=1;
	}return ans%mod;
}
int inv[M],c[M],d[M],n,m,r[M],tmp[M],a[M],b[M],inv2=ksm(2,mod-2),dera[M],inva[M],lnb[M],lna[M],k,aa[M],bb[M],aaa[M],bbb[M],invb[M],F[M],cpy[M];
void ntt(int *A,int lim,int type){//ntt
	for(int i=0;i<lim;i++) if(i<r[i]) swap(A[i],A[r[i]]);
	for(int mid=1;mid<lim;mid<<=1){
		int W=ksm(g,(mod-1)/(mid<<1));
		for(int R=mid<<1,j=0;j<lim;j+=R){
			int w=1;
			for(ll k=0;k<mid;k++,w=(ll)w*W%mod){
				int x=A[j+k],y=(ll)w*A[j+k+mid]%mod;
				A[j+k]=(x+y)%mod;
				A[j+mid+k]=(x-y+mod)%mod;
			}
		}
	}
	if(type==-1){
		reverse(A+1,A+lim);
        int inv=ksm(lim,mod-2);
        for(int i=0;i<lim;i++) A[i]=(ll)A[i]*inv%mod;
	}
}
void getmul(int a[],int b[],int c[],int n,int m){//多项式乘法 
	int lim=1,l=0;
    while(lim<=n+m) lim<<=1,l++;
    for(int i=1;i<lim;i++) r[i]=(r[i>>1]>>1|(i&1)<<(l-1));
    for(int i=0;i<=n;i++) aa[i]=a[i];
    for(int i=0;i<=m;i++) bb[i]=b[i];
    ntt(aa,lim,1),ntt(bb,lim,1);
    for(int i=0;i<lim;i++){
        c[i]=(ll)aa[i]*bb[i]%mod;
        aa[i]=bb[i]=0;
    }ntt(c,lim,-1);
}
void getinv(int a[],int b[],int len){//多项式求逆 
	if(len==1){
		b[0]=ksm(a[0],mod-2);
		return;
	}getinv(a,b,(len+1)>>1);
	int lim=1,l=0;
	while(lim<len+len) lim<<=1,l++;
	for(int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
	for(int i=0;i<len;i++) tmp[i]=a[i];
    for(int i=len;i<lim;i++) tmp[i]=0;
	ntt(tmp,lim,1),ntt(b,lim,1);
	for(int i=0;i<lim;i++) b[i]=(ll)b[i]*((2-(ll)tmp[i]*b[i]%mod+mod)%mod)%mod;
	ntt(b,lim,-1);
	for(int i=len;i<lim;i++) b[i]=0;
}
void getdiv(int a[],int b[],int c[],int d[],int n,int m){//多项式除法 
	for(int i=0;i<=n;i++) aaa[i]=a[i];
	for(int i=0;i<=m;i++) bbb[i]=b[i];
	reverse(aaa,aaa+n+1),reverse(bbb,bbb+m+1);
	getinv(bbb,invb,n-m+1);
	getmul(aaa,invb,c,n-m,n-m);
	reverse(c,c+n-m+1);
    reverse(aaa,aaa+n+1);reverse(bbb,bbb+m+1);
    getmul(c,bbb,d,n-m,m);
    for(int i=0;i<m;i++) d[i]=(aaa[i]-d[i]+mod)%mod;
    for(int i=0;i<=n;i++) aaa[i]=0;
	for(int i=0;i<=m;i++) bbb[i]=0;
}
void getsqrt(int a[],int b[],int len){//多项式开根 
	if(len==1) return (void)(b[0]=1);
	getsqrt(a,b,(len+1)>>1);
	for(int i=0;i<=(len<<1);i++) F[i]=0;
	getinv(b,F,len);
	int lim=1,l=0;
	while(lim<len+len) lim<<=1,l++;
	for(int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
	for(int i=0;i<len;i++) cpy[i]=a[i];
    for(int i=len;i<lim;i++) cpy[i]=0;
	ntt(cpy,lim,1),ntt(b,lim,1),ntt(F,lim,1);
	for(int i=0;i<lim;i++) b[i]=((ll)((ll)(b[i]+(ll)cpy[i]*F[i]%mod)%mod)*inv2)%mod;
	ntt(b,lim,-1);
	for(int i=len;i<lim;i++) b[i]=0;
}
void getintegral(int a[],int b[],int len){//积分 
	for(int i=1;i<len;i++) b[i]=(ll)a[i-1]*ksm(i,mod-2)%mod;
	b[0]=0;
}
void getderivation(int a[],int b[],int len){//求导 
	for(int i=1;i<len;i++) b[i-1]=(ll)a[i]*i%mod;
	b[len-1]=0; 
}
void getln(int a[],int b[],int len){//多项式ln 
	getinv(a,inva,len);
	getderivation(a,dera,len);
	int lim=1,l=0;
	while(lim<len+len) lim<<=1,l++;
	for(int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
	ntt(inva,lim,1),ntt(dera,lim,1);
	for(int i=0;i<lim;i++) inva[i]=(ll)inva[i]*dera[i]%mod;
	ntt(inva,lim,-1);
	getintegral(inva,b,len);
	for(int i=0;i<lim;i++) inva[i]=dera[i]=0;
}
void getexp(int a[],int b[],int len){//多项式exp 
	if(len==1) return (void)(b[0]=1);
	getexp(a,b,len>>1),getln(b,lnb,len);
	for(int i=0;i<len;i++) lnb[i]=(ll)(a[i]-lnb[i]+(i==0)+mod)%mod; 
	int lim=(len<<1);
	ntt(lnb,lim,1),ntt(b,lim,1);
	for(int i=0;i<lim;i++) b[i]=(ll)lnb[i]*b[i]%mod;
	ntt(b,lim,-1);
	for(int i=len;i<lim;i++) lnb[i]=b[i]=0;
}
void getksm(int a[],int b[],int len,int k){//多项式快速幂 
	getln(a,lna,len);
	for(int i=0;i<len;i++) lna[i]=(ll)k*lna[i]%mod;
	getexp(lna,b,len);
}
void init(){
    inv[0]=inv[1]=1;
    for(int i=2;i<=m;++i) inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
}
signed main(){
	n=read(),m=read();
	init();
	for(int i=1;i<=n;i++) a[read()]++;
	for(int i=1;i<=m;i++){
		if(!a[i]) continue;
		for(int j=1;j*i<=m;j++)
			b[j*i]=(ll)(b[j*i]+(ll)a[i]%mod*inv[j]%mod)%mod;
	}int lim=1;while(lim<=m) lim<<=1;
	getexp(b,c,lim);
	for(int i=1;i<=m;i++) printf("%d\n",(ll)(c[i]+mod)%mod);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值