P4841-EGF

P4841

题目描述题目描述

题解

EGF。
设有 i i i个点的有标号无向联通图为 p i p_i pi,有 i i i个点的有标号无向随意联通图为 q i q_i qi
设有 i i i个点的无标号无向联通图为 f i f_i fi,有 i i i个点的无标号无向随意联通图为 g i g_i gi
那么有:
f i = p i i ! , g i = q i i ! f_i=\frac{p_i}{i!},g_i=\frac{q_i}{i!} fi=i!pi,gi=i!qi
设出生成函数:
F ( x ) = ∑ i = 0 ∞ f i x i = ∑ i = 0 ∞ p i x i i ! G ( x ) = ∑ i = 0 ∞ g i x i = ∑ i = 0 ∞ q i x i i ! F(x)=\sum\limits_{i=0}^{\infty}f_ix^i=\sum\limits_{i=0}^{\infty}p_i\frac{x^i}{i!}\\ G(x)=\sum\limits_{i=0}^{\infty}g_ix^i=\sum\limits_{i=0}^{\infty}q_i\frac{x^i}{i!}\\ F(x)=i=0fixi=i=0pii!xiG(x)=i=0gixi=i=0qii!xi
由于无标号无向随意连通图可以看做是若干个无标号连通图的组合,那么有:
G ( x ) = ∑ i = 0 ∞ F ( x ) i i ! G(x)=\sum\limits_{i=0}^{\infty}\frac{F(x)^i}{i!} G(x)=i=0i!F(x)i
由于 F ( x ) i F(x)^i F(x)i是有序的,而求得是组合,那么要除以 i ! i! i!
显然是一个指数生成函数的形式,那么有:
G ( x ) = e F ( x ) F ( x ) = ln ⁡ G ( x ) G(x)=e^{F(x)}\\ F(x)=\ln G(x)\\ G(x)=eF(x)F(x)=lnG(x)
因为 g i = 2 C ( n , 2 ) i ! g_i=\frac{2^{C(n,2)}}{i!} gi=i!2C(n,2),那么一个多项式 ln ⁡ \ln ln即可解决。时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)

代码

#include<bits/stdc++.h>
#define ll long long 
using namespace std;
const int g=3;
const int mod=1004535809; 
const int M=2100009;
char s;
int read(){
	int f=1,re=0;char ch;
	for(ch=getchar();!isdigit(ch)&&ch!='-';ch=getchar());
	if(ch=='-'){f=-1,ch=getchar();}
	for(;isdigit(ch);ch=getchar()) re=(re<<3)+(re<<1)+ch-'0';
	return re*f;
}
int ksm(int a,int b){//快速幂 
	int ans=1;
	while(b){
		if(b&1) ans=(ll)ans*a%mod;
		a=(ll)a*a%mod;
		b>>=1;
	}return ans%mod;
}
int mi[M],inv[M],c[M],d[M],n,m,r[M],tmp[M],a[M],b[M],inv2=ksm(2,mod-2),dera[M],inva[M],lnb[M],lna[M],k,aa[M],bb[M],aaa[M],bbb[M],invb[M],F[M],cpy[M];
void ntt(int *A,int lim,int type){//ntt
	for(int i=0;i<lim;i++) if(i<r[i]) swap(A[i],A[r[i]]);
	for(int mid=1;mid<lim;mid<<=1){
		int W=ksm(g,(mod-1)/(mid<<1));
		for(int R=mid<<1,j=0;j<lim;j+=R){
			int w=1;
			for(ll k=0;k<mid;k++,w=(ll)w*W%mod){
				int x=A[j+k],y=(ll)w*A[j+k+mid]%mod;
				A[j+k]=(x+y)%mod;
				A[j+mid+k]=(x-y+mod)%mod;
			}
		}
	}
	if(type==-1){
		reverse(A+1,A+lim);
        int inv=ksm(lim,mod-2);
        for(int i=0;i<lim;i++) A[i]=(ll)A[i]*inv%mod;
	}
}
void getmul(int a[],int b[],int c[],int n,int m){//多项式乘法 
	int lim=1,l=0;
    while(lim<=n+m) lim<<=1,l++;
    for(int i=1;i<lim;i++) r[i]=(r[i>>1]>>1|(i&1)<<(l-1));
    for(int i=0;i<=n;i++) aa[i]=a[i];
    for(int i=0;i<=m;i++) bb[i]=b[i];
    ntt(aa,lim,1),ntt(bb,lim,1);
    for(int i=0;i<lim;i++){
        c[i]=(ll)aa[i]*bb[i]%mod;
        aa[i]=bb[i]=0;
    }ntt(c,lim,-1);
}
void getinv(int a[],int b[],int len){//多项式求逆 
	if(len==1){
		b[0]=ksm(a[0],mod-2);
		return;
	}getinv(a,b,(len+1)>>1);
	int lim=1,l=0;
	while(lim<len+len) lim<<=1,l++;
	for(int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
	for(int i=0;i<len;i++) tmp[i]=a[i];
    for(int i=len;i<lim;i++) tmp[i]=0;
	ntt(tmp,lim,1),ntt(b,lim,1);
	for(int i=0;i<lim;i++) b[i]=(ll)b[i]*((2-(ll)tmp[i]*b[i]%mod+mod)%mod)%mod;
	ntt(b,lim,-1);
	for(int i=len;i<lim;i++) b[i]=0;
}
void getdiv(int a[],int b[],int c[],int d[],int n,int m){//多项式除法 
	for(int i=0;i<=n;i++) aaa[i]=a[i];
	for(int i=0;i<=m;i++) bbb[i]=b[i];
	reverse(aaa,aaa+n+1),reverse(bbb,bbb+m+1);
	getinv(bbb,invb,n-m+1);
	getmul(aaa,invb,c,n-m,n-m);
	reverse(c,c+n-m+1);
    reverse(aaa,aaa+n+1);reverse(bbb,bbb+m+1);
    getmul(c,bbb,d,n-m,m);
    for(int i=0;i<m;i++) d[i]=(aaa[i]-d[i]+mod)%mod;
    for(int i=0;i<=n;i++) aaa[i]=0;
	for(int i=0;i<=m;i++) bbb[i]=0;
}
void getsqrt(int a[],int b[],int len){//多项式开根 
	if(len==1) return (void)(b[0]=1);
	getsqrt(a,b,(len+1)>>1);
	for(int i=0;i<=(len<<1);i++) F[i]=0;
	getinv(b,F,len);
	int lim=1,l=0;
	while(lim<len+len) lim<<=1,l++;
	for(int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
	for(int i=0;i<len;i++) cpy[i]=a[i];
    for(int i=len;i<lim;i++) cpy[i]=0;
	ntt(cpy,lim,1),ntt(b,lim,1),ntt(F,lim,1);
	for(int i=0;i<lim;i++) b[i]=((ll)((ll)(b[i]+(ll)cpy[i]*F[i]%mod)%mod)*inv2)%mod;
	ntt(b,lim,-1);
	for(int i=len;i<lim;i++) b[i]=0;
}
void getintegral(int a[],int b[],int len){//积分 
	for(int i=1;i<len;i++) b[i]=(ll)a[i-1]*ksm(i,mod-2)%mod;
	b[0]=0;
}
void getderivation(int a[],int b[],int len){//求导 
	for(int i=1;i<len;i++) b[i-1]=(ll)a[i]*i%mod;
	b[len-1]=0; 
}
void getln(int a[],int b[],int len){//多项式ln 
	getinv(a,inva,len);
	getderivation(a,dera,len);
	int lim=1,l=0;
	while(lim<len+len) lim<<=1,l++;
	for(int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
	ntt(inva,lim,1),ntt(dera,lim,1);
	for(int i=0;i<lim;i++) inva[i]=(ll)inva[i]*dera[i]%mod;
	ntt(inva,lim,-1);
	getintegral(inva,b,len);
	for(int i=0;i<lim;i++) inva[i]=dera[i]=0;
}
void getexp(int a[],int b[],int len){//多项式exp 
	if(len==1) return (void)(b[0]=1);
	getexp(a,b,len>>1),getln(b,lnb,len);
	for(int i=0;i<len;i++) lnb[i]=(ll)(a[i]-lnb[i]+(i==0)+mod)%mod; 
	int lim=(len<<1);
	ntt(lnb,lim,1),ntt(b,lim,1);
	for(int i=0;i<lim;i++) b[i]=(ll)lnb[i]*b[i]%mod;
	ntt(b,lim,-1);
	for(int i=len;i<lim;i++) lnb[i]=b[i]=0;
}
void getksm(int a[],int b[],int len,int k){//多项式快速幂 
	getln(a,lna,len);
	for(int i=0;i<len;i++) lna[i]=(ll)k*lna[i]%mod;
	getexp(lna,b,len);
}
void init(){
    mi[0]=inv[0]=1;
    for(int i=1;i<=n;i++)
	    mi[i]=1ll*mi[i-1]*i%mod;
    inv[n]=ksm(mi[n],mod-2);
    for(int i=n-1;i>=0;i--)
	    inv[i]=1ll*inv[i+1]*(i+1)%mod;
}
signed main(){
	n=read();init();
	int lim=1;while(lim<=n+1) lim<<=1;
	for(int i=0;i<lim;i++) a[i]=(ll)ksm(2,(ll)i*(i-1)/2%(mod-1))*inv[i]%mod;
	getln(a,b,lim);
	printf("%d\n",(ll)b[n]*mi[n]%mod);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值