机器人状态估计(State Estimation for Robotics)笔记 Chapter1: 简介

本书探讨了机器人状态估计的历史、传感器及其在三维世界中的应用,介绍了经典估计方法与非线性系统处理。内容涵盖从海事罗盘到卡尔曼滤波器的发展,以及如何处理旋转的李群理论。书中还对比了贝叶斯方法和最大后验估计,讨论了三维几何和实际问题。
摘要由CSDN通过智能技术生成

Chapter 1: 简介

本书将首先介绍一些经典的估计方法,可用于线性高斯系统;
然后将介绍一些像非线性系统与非高斯噪声的扩展方法;
还会开个小差,介绍如何讲状态估计结果用于在三维世界中操控机器人,提倡一种处理
旋转的方式:李群。

1. 历史

四千年前,航海者需要进行状态估计。
到十五世纪,发明了海事罗盘和航海图,可以在海上进行状态估计。
后来发明了一系列其他的测量红菊,如使用天体导航测量纬度;
而测量经度则是依靠便携钟表的发明。

天文学中也有状态估计。
高斯发明了最小二乘,用以在预测轨道时最小化测量误差的影响;
其后,他证明了在误差高斯分布下,最小二乘最优。

在二十世纪中叶,估计问题开始发展,这与计算机的发明相关。
1960年卡尔曼发表了两篇里程碑论文,定义了很多之后状态估计领域的内容:
他首先定义了可观测性,即动态系统中的一个状态是否可以通过测量数据中来推测;
他又定义了噪声存在下,估计系统状态的最佳框架,即卡尔曼滤波器,流行了五十年。
NASA最先使用KF来帮助航天器进行状态估计。

十五年前(两千年左右),状态估计这个研究领域开始衰落,
但随着新的传感器技术,这个领域开始迎接新的挑战。

2. 传感器,测量,和问题定义

传感器精度有限,因而测量数据有不确定性。
估计状态时,需要记录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值