概率机器人笔记
文章平均质量分 88
DaqianC
这个作者很懒,什么都没留下…
展开
-
概率机器人(Probabilistic Robotics)笔记 Chapter 7: 移动机器人定位(Mobile Robot Localization)
1. 简介可以把定位看作坐标系变换问题,即全局地图坐标系与机器人local坐标系的变换。传感器通常不能直接测量位置,需要从其他数据中推算位置。通常需要累积一段时间的数据,来进行定位。定位算法通常针对特定地图表达方式,多种多样。2. 定位问题分类局部(local) v.s. 全局(global)定位问题可按照初始化的信息和运行时的信息分三类,难度递增:位置追踪(position t...原创 2018-10-25 17:55:00 · 2168 阅读 · 0 评论 -
概率机器人(Probability Robotics)笔记 Chapter 6: 测量(Measurements)
概率机器人笔记 Chapter 6: 测量(Measurements)1. 简介测量模型描述了在物理世界中传感器数据的生成。概率机器人学将噪声显式地融入传感器测量模型中。测量模型定义为条件概率p(zt∣xt,m)p(z_t|x_t,m)p(zt∣xt,m)对于超声波的噪声:1.偏大:以特定角度测量光滑平面->反射(specular reflection效应)2.偏小:sen...原创 2018-10-23 13:47:28 · 1597 阅读 · 0 评论 -
概率机器人(Probabilistic Robotics)笔记 Chapter 8: 栅格定位与蒙特卡洛定位(Grid and Monte Carlo Localization)
1. 简介本章介绍两个全局定位算法,与第七章介绍的高斯方法有所不同:可以处理原始传感器数据,不用提取特征,也可以处理负信息。非参数化,不受限于EKF的单模型分布。可以解决全局定位问题,有时甚至可以解决绑架问题。第一个算法叫栅格定位。它使用一个直方图滤波器来表示后验置信。缺点是,如果栅格划分很细,则计算量很大。如果划分粗糙,则离散化时信息丢失会影响滤波器表现。第二个算法叫蒙特卡洛定位...原创 2018-11-13 00:30:06 · 2525 阅读 · 0 评论 -
概率机器人(Probability Robotics)笔记 Chapter 3: 高斯滤波器(Gaussian Filters)
高斯滤波器1. 简介本章讲解一系列递归状态估计器,统称高斯滤波器。高斯滤波器是最早的连续贝叶斯滤波器的计算量可实现版本。高斯滤波器的思想是所有的置信度都是多元高斯。分布表达式:p(x)=det(2πΣ)−frac12exp{−12(x−μ)TΣ−1(x−μ)}p(x)=\det (2\pi\Sigma)^{-frac{1}{2}}\exp\{-\frac{1}{2}(x-\mu)^T...原创 2018-11-17 01:27:27 · 620 阅读 · 0 评论 -
概率机器人(Probability Robotics)笔记 Chapter 9: 占据栅格建图(Occupancy Grid Mapping)
1. 简介前两章讲了定位的概率方法,是一个低维度感知问题,假设地图已知。但有些情况地图未知,或者不准确。因此建图可以让部署机器人更容易,也会让机器人更能适应环境变化。建图是真正的自动机器人的核心竞争力之一。建图难在:假设空间巨大:地图定义在连续空间上,因此无限高维度;即使离散化,维度也很高。因此贝叶斯滤波的方法不好使。建图是一个“鸡-蛋”问题:有地图定位很容易,有定位建图也不...原创 2019-05-24 15:32:17 · 2522 阅读 · 0 评论 -
概率机器人(Probability Robotics)笔记 Chapter 10: SLAM
1. 简介SLAM问题的输入只有测量和控制,没有地图和位姿估计。有两种同等重要的SLAM问题:在线SLAM(online SLAM):同时估计地图和即时位姿这两个后验,即p(xt,m∣z1:t,u1:t)p(x_t,m|z_{1:t},u_{1:t})p(xt,m∣z1:t,u1:t)。称为在线SLAM的原因是,只估计时间ttt存留的变量。很多在线SLAM算法是递增的,即只处理...原创 2018-11-17 20:05:08 · 1279 阅读 · 0 评论