《Schwarz-Christoffel Mapping》笔记

Schwarz-Christoffel Mapping

本笔记不全,跳过了部分内容,并持续更新~

Chapter 1: Introduction

1.1 The Schwarz-Christoffel Idea

Schwarz-Christoffel变换背后的想法是,任何共形映射(conformal mapping) f ​ f​ f都有导数: f ′ = ∏ f k ​ f'=\prod f_k​ f=fk,其中 f k ​ f_k​ fk是一系列典型(canonical)函数。这个公式的重要性在于辐角 arg ⁡ f ′ = ∑ arg ⁡ f k ​ \arg f'=\sum\arg f_k​ argf=argfk。在classical变换中,所有 arg ⁡ f k ​ \arg f_k​ argfk都设计为一个阶跃函数,所以 arg ⁡ f ′ ​ \arg f'​ argf是一个带有特定阶跃的分段常数(如 f ​ f​ f将实轴映射到多边形上)。设 P ​ P​ P为多边形 Γ ​ \Gamma​ Γ包围的复平面,顶点为 w 1 , ⋯   , w n ​ w_1,\cdots,w_n​ w1,,wn,内角为 α 1 π , ⋯   , α n π ​ \alpha_1\pi, \cdots, \alpha_n\pi​ α1π,,αnπ,其中 α k ∈ ( 0 , 2 ) ​ \alpha_k\in(0,2)​ αk(0,2)。设共形映射 f ​ f​ f将上半平面 H + ​ H^+​ H+映射到 P ​ P​ P上,并设 z k = f − 1 ( w k ) ​ z_k=f^{-1}(w_k)​ zk=f1(wk)是第 k ​ k​ kprevertex。我们可以不失一般性地假设 z n = ∞ ​ z_n=\infin​ zn=,即实轴上的无穷映射到多边形最后一个顶点上,因为即使 ∞ ​ \infin​ 还不是prevertex,我们也可以将其image设为一个新的内角为 π ​ \pi​ π的顶点。其余的prevertices z 1 , ⋯   , z n − 1 ​ z_1,\cdots,z_{n-1}​ z1,,zn1都是真的。

在线段 ( z k , z k + 1 ) ​ (z_k,z_{k+1})​ (zk,zk+1)之间, f ​ f​ f是分析连续的,即 f ′ ​ f'​ f存在,且 arg ⁡ f ′ ​ \arg f'​ argf是常数并在 z k ​ z_k​ zk处有阶跃,即 [ arg ⁡ f ′ ( z ) ] z k − z k + = ( 1 − α k ) π = β k π ​ [\arg f'(z)]_{z_k^-}^{z_k^+}=(1-\alpha_k)\pi=\beta_k\pi​ [argf(z)]zkzk+=(1αk)π=βkπ,其中 β k π ​ \beta_k\pi​ βkπ是在第k个顶点处的转角。我们可以根据以上条件设定函数 f k = ( z − z k ) − β k ​ f_k=(z-z_k)^{-\beta_k}​ fk=(zzk)βk。下图示意了实轴经过 f k ​ f_k​ fk映射的结果。

在这里插入图片描述

定理1.1: 设P是多边形 Γ ​ \Gamma​ Γ的内部,顶点为 w 1 , ⋯   , w n ​ w_1,\cdots,w_n​ w1,,wn(逆时针),内角为 α 1 π , ⋯   , α n π ​ \alpha_1\pi, \cdots, \alpha_n\pi​ α1π,,αnπ,定义 f ​ f​ f是将上半平面 H + ​ H_+​ H+变换到 P ​ P​ P的任意共形映射,且 f ( ∞ ) = w n ​ f(\infin)=w_n​ f()=wn,则 f ( z ) = A + C ∫ z ∏ k = 1 n − 1 ( ζ − z k ) a k − 1 d ζ ​ f(z)=A+C\int^z\prod_{k=1}^{n-1}(\zeta-z_k)^{a_k-1} d \zeta​ f(z)=A+Czk=1n1(ζzk)ak1dζ其中 A , C ​ A,C​ A,C都是复常数,且对于 k = 1 , ⋯   , n − 1 ​ k=1, \cdots ,n-1​ k=1,,n1都有 w k = f ( z k ) ​ w_k=f(z_k)​ wk=f(zk)

以上公式可以用于映射不同的区域(如单位圆)、有branch points的区域、多连通区域、边界为圆弧的区域、甚至是边界分段解析的区域,在第四章中说明。

问题来了:我们不知道prevertices z k z_k zk是多少,那也就没法用定理1.1计算映射。从定理中可以发现,无论 z k z_k zk是多少,多边形的内角都是不变的,这由 a k a_k ak决定。也就是说,如果 z k z_k zk选的不好,映射出来的多边形只是内角与目标多边形相同,而边长不同。 z k z_k zk的确定称为Schwarz-Christoffel parameter problem,并且需要在使用SC方程之前求解。具体求解方法在第二章中讲述。

在应用中, z k z_k zk非线性地取决于多边形的边长,没有解析解,因此经常使用数值计算来计算定理1.1中的积分。数值问题在第三章中讨论。

1.2 历史

共形映射起源于19世纪。黎曼在1851年提出了黎曼映射定理,说复平面上任何单连通区域,只要不是整个复平面,就可以互相进行共形映射。Schwarz-Christoffel公式随后提出。

Christoffel在1867年于ETH Zurich发表了第一篇关于SC公式的论文,发现了在多边形域内,格林方程可以通过对半平面进行共形映射获得。随后他扩展到多边形外部与曲线区域。

Schwarz与1869年独立提出相同的理论,但侧重于数值和特定情境,如三角形;他甚至发表了首个SC映射的plot。论文中还包含了他的著名的反射原理:如果一个解析函数 f f f被连续扩展到一个直线或圆弧边界,并将边界弧映射到另一个直线或者圆弧上,则 f f f可以被解析地continued across the arc by reflection。

在SC公式发现的130年后,它在理论复分析中产生了巨大影响,用于证明黎曼映射定理与其推论。在计算机发明以后,SC公式用于具体应用。

在20世纪下半夜,有很多关于算法和程序的工作,但质量不高、综合性不强;很多重要问题都被忽视,如SC积分的快速计算,还有在解参数问题时prevertices的顺序。最综合的程序应当是Trefethen在1980年写的SCPACK和Driscoll在1996年发布的SC Toolbox。

Chapter 2: Essentials of Schwarz-Christoffel mapping

2.1 多边形

定义多边形 Γ ​ \Gamma​ Γ,顶点为 w 1 , ⋯   , w n ​ w_1,\cdots,w_n​ w1,,wn(逆时针),内角为 α 1 π , ⋯   , α n π ​ \alpha_1\pi, \cdots, \alpha_n\pi​ α1π,,αnπ,并扩展定义 w n + 1 = w 1 ​ w_{n+1}=w_1​ wn+1=w1 w 0 = w n ​ w_0=w_n​ w0=wn

内角 α k \alpha_k αk的定义是从 w k w_k wk的incoming边到outgoing边的扫过的角度。如果 ∣ w k ∣ &lt; ∞ |w_k|&lt;\infin wk<,则 α k ∈ ( 0 , 2 ] \alpha_k\in(0,2] αk(0,2]。如果 α k = 2 \alpha_k=2 αk=2,则两边重合, w k w_k wk是这个裂缝(slit)的尖尖。如果 w k = ∞ w_k=\infin wk=,则 α k ∈ [ − 2 , 0 ] \alpha_k\in[-2,0] αk[2,0]。如果 w k w_k wk与其相邻顶点都是有限的,则指定 α k \alpha_k αk是冗余的,但如果不是,则就需要确定 α k \alpha_k αk来保证多边形唯一。

同时要求外角和为 2 π ​ 2\pi​ 2π,即 ∑ k = 1 n α k = n − 2 ​ \sum_{k=1}^n\alpha_k=n-2​ k=1nα

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值