电网中直流潮流Distribution Factor的计算,bus间有多条输电线

电网中DC power flow的计算依赖与distribution factor的计算,而DF的计算是由电网结构决定的,电网主要有bus与line组成的,以一个简单的3-bus系统为例:在这里插入图片描述Bus 数量:N
Line 数量:L
line1: bus1-bus2
line2: bus1-bus3
line3: bus2-bus3
incidence matrix A: 表示line的起始信息,行表示line,相关列中1是表示起始bus,-1表示终点bus,L×N-matrix。
A = [ 1 − 1 0 1 0 − 1 0 1 − 1 ] A=\left[ \begin{matrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{matrix} \right] A=110101011

admittance matrix Y:N×N-matrix 导纳矩阵
Y = A T ⋅ Y d ⋅ A \mathbf{Y}=\mathbf{A}^{T} \cdot \mathbf{Y}_{d} \cdot \mathbf{A} Y=ATYdA
Y d \mathbf{Y}_{d} Yd a L×L-diagonal matrix with the line admittances on the diagonal (i.e., the primitive admittance matrix).
阻抗的实数部分是电阻,虚数部分是电抗。
导纳是电导和电纳的复合形式,忽略了电阻的话,电纳就是电抗的倒数。
susceptance matrix B:电纳矩阵
DC power flow中,忽略了电阻,主要关注的是线路的电抗。
p L = B d ⋅ A ⋅ δ N \mathbf{p}_{L}=\mathbf{B}_{d} \cdot \mathbf{A} \cdot \boldsymbol{\delta}_{N} pL=BdAδN

B d \mathbf{B}_{d} Bd是LxL的对角矩阵,具体形式为:
B d = [ 5 0 0 0 10 0 0 0 5 ] \mathbf{B}_{d}=\left[ \begin{matrix} 5 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{matrix} \right] Bd=5000100005

line L上的flow为: P L = B L ( δ N − δ Q ) = 1 X N Q ( δ N − δ Q ) P_{L}=B_{L}\left(\delta_{N}-\delta_{Q}\right)=\frac{1}{X_{NQ}}(\delta_N-\delta_Q) PL=BL(δNδQ)=XNQ1(δNδQ)

从bus N中出去的flow总和等于bus B的节点注入功率,
P N = ∑ Q B L ( δ N − δ Q ) p N = A T ⋅ B d ⋅ A ⋅ δ N \begin{aligned} P_{N} &=\sum_{Q} B_{L}\left(\delta_{N}-\delta_{Q}\right) \\ \mathbf{p}_{N} &=\mathbf{A}^{T} \cdot \mathbf{B}_{d} \cdot \mathbf{A} \cdot \boldsymbol{\delta}_{N} \end{aligned} PNpN=QBL(δNδQ)=ATBdAδN

p L = ( ( B d ⋅ A ) ⋅ ( A T ⋅ B d ⋅ A ) − 1 ) ⋅ p N \mathbf{p}_{L}=\left(\left(\mathbf{B}_{d} \cdot \mathbf{A}\right) \cdot\left(\mathbf{A}^{T} \cdot \mathbf{B}_{d} \cdot \mathbf{A}\right)^{-1}\right) \cdot \mathbf{p}_{N} pL=((BdA)(ATBdA)1)pN

P T D F L × N = ( B d ⋅ A ) ⋅ ( A T ⋅ B d ⋅ A ) − 1 \mathbf{P T D F}^{L \times N}=\left(\mathbf{B}_{d} \cdot \mathbf{A}\right) \cdot\left(\mathbf{A}^{T} \cdot \mathbf{B}_{d} \cdot \mathbf{A}\right)^{-1} PTDFL×N=(BdA)(ATBdA)1
需要注意的是, ( B d ⋅ A ) \left(\mathbf{B}_{d} \cdot \mathbf{A}\right) (BdA)需要去除reference bus的列, ( A T ⋅ B d ⋅ A ) \left(\mathbf{A}^{T} \cdot \mathbf{B}_{d} \cdot \mathbf{A}\right) (ATBdA)是非线性独立的,需要去掉reference bus的行和列。由此得到shift(distribution) factor。
bus 3作为reference,求得:
P T D F = [ 0.2 − 0.4 0 0.8 0.4 0 0.2 0.6 0 ] PTDF=\left[ \begin{matrix} 0.2 & -0.4 & 0 \\ 0.8 & 0.4 & 0 \\ 0.2 & 0.6 & 0 \end{matrix} \right] PTDF=0.20.80.20.40.40.6000

bus之间不止一条输电线的case:
在这里插入图片描述line1: bus1-bus2
line2: bus1-bus3
line3: bus1-bus3
line4: bus2-bus3
B d = [ 5 0 0 0 10 0 0 0 5 ] \mathbf{B}_{d}=\left[ \begin{matrix} 5 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{matrix} \right] Bd=5000100005
P T D F = [ 0.2 − 0.4 0 0.4 0.2 0 0.4 0.2 0 0.2 0.6 0 ] PTDF=\left[ \begin{matrix} 0.2 & -0.4 & 0 \\ 0.4 & 0.2 & 0 \\ 0.4 & 0.2 & 0 \\ 0.2 & 0.6 & 0 \end{matrix} \right] PTDF=0.20.40.40.20.40.20.20.60000

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值