电网中DC power flow的计算依赖与distribution factor的计算,而DF的计算是由电网结构决定的,电网主要有bus与line组成的,以一个简单的3-bus系统为例:Bus 数量:N
Line 数量:L
line1: bus1-bus2
line2: bus1-bus3
line3: bus2-bus3
incidence matrix A: 表示line的起始信息,行表示line,相关列中1是表示起始bus,-1表示终点bus,L×N-matrix。
A
=
[
1
−
1
0
1
0
−
1
0
1
−
1
]
A=\left[ \begin{matrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{matrix} \right]
A=⎣⎡110−1010−1−1⎦⎤
admittance matrix Y:N×N-matrix 导纳矩阵
Y
=
A
T
⋅
Y
d
⋅
A
\mathbf{Y}=\mathbf{A}^{T} \cdot \mathbf{Y}_{d} \cdot \mathbf{A}
Y=AT⋅Yd⋅A
Y
d
\mathbf{Y}_{d}
Yd a L×L-diagonal matrix with the line admittances on the diagonal (i.e., the primitive admittance matrix).
阻抗的实数部分是电阻,虚数部分是电抗。
导纳是电导和电纳的复合形式,忽略了电阻的话,电纳就是电抗的倒数。
susceptance matrix B:电纳矩阵
DC power flow中,忽略了电阻,主要关注的是线路的电抗。
p
L
=
B
d
⋅
A
⋅
δ
N
\mathbf{p}_{L}=\mathbf{B}_{d} \cdot \mathbf{A} \cdot \boldsymbol{\delta}_{N}
pL=Bd⋅A⋅δN
B
d
\mathbf{B}_{d}
Bd是LxL的对角矩阵,具体形式为:
B
d
=
[
5
0
0
0
10
0
0
0
5
]
\mathbf{B}_{d}=\left[ \begin{matrix} 5 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{matrix} \right]
Bd=⎣⎡5000100005⎦⎤
line L上的flow为: P L = B L ( δ N − δ Q ) = 1 X N Q ( δ N − δ Q ) P_{L}=B_{L}\left(\delta_{N}-\delta_{Q}\right)=\frac{1}{X_{NQ}}(\delta_N-\delta_Q) PL=BL(δN−δQ)=XNQ1(δN−δQ)
从bus N中出去的flow总和等于bus B的节点注入功率,
P
N
=
∑
Q
B
L
(
δ
N
−
δ
Q
)
p
N
=
A
T
⋅
B
d
⋅
A
⋅
δ
N
\begin{aligned} P_{N} &=\sum_{Q} B_{L}\left(\delta_{N}-\delta_{Q}\right) \\ \mathbf{p}_{N} &=\mathbf{A}^{T} \cdot \mathbf{B}_{d} \cdot \mathbf{A} \cdot \boldsymbol{\delta}_{N} \end{aligned}
PNpN=Q∑BL(δN−δQ)=AT⋅Bd⋅A⋅δN
p L = ( ( B d ⋅ A ) ⋅ ( A T ⋅ B d ⋅ A ) − 1 ) ⋅ p N \mathbf{p}_{L}=\left(\left(\mathbf{B}_{d} \cdot \mathbf{A}\right) \cdot\left(\mathbf{A}^{T} \cdot \mathbf{B}_{d} \cdot \mathbf{A}\right)^{-1}\right) \cdot \mathbf{p}_{N} pL=((Bd⋅A)⋅(AT⋅Bd⋅A)−1)⋅pN
P
T
D
F
L
×
N
=
(
B
d
⋅
A
)
⋅
(
A
T
⋅
B
d
⋅
A
)
−
1
\mathbf{P T D F}^{L \times N}=\left(\mathbf{B}_{d} \cdot \mathbf{A}\right) \cdot\left(\mathbf{A}^{T} \cdot \mathbf{B}_{d} \cdot \mathbf{A}\right)^{-1}
PTDFL×N=(Bd⋅A)⋅(AT⋅Bd⋅A)−1
需要注意的是,
(
B
d
⋅
A
)
\left(\mathbf{B}_{d} \cdot \mathbf{A}\right)
(Bd⋅A)需要去除reference bus的列,
(
A
T
⋅
B
d
⋅
A
)
\left(\mathbf{A}^{T} \cdot \mathbf{B}_{d} \cdot \mathbf{A}\right)
(AT⋅Bd⋅A)是非线性独立的,需要去掉reference bus的行和列。由此得到shift(distribution) factor。
bus 3作为reference,求得:
P
T
D
F
=
[
0.2
−
0.4
0
0.8
0.4
0
0.2
0.6
0
]
PTDF=\left[ \begin{matrix} 0.2 & -0.4 & 0 \\ 0.8 & 0.4 & 0 \\ 0.2 & 0.6 & 0 \end{matrix} \right]
PTDF=⎣⎡0.20.80.2−0.40.40.6000⎦⎤
bus之间不止一条输电线的case:
line1: bus1-bus2
line2: bus1-bus3
line3: bus1-bus3
line4: bus2-bus3
B
d
=
[
5
0
0
0
10
0
0
0
5
]
\mathbf{B}_{d}=\left[ \begin{matrix} 5 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{matrix} \right]
Bd=⎣⎡5000100005⎦⎤
P
T
D
F
=
[
0.2
−
0.4
0
0.4
0.2
0
0.4
0.2
0
0.2
0.6
0
]
PTDF=\left[ \begin{matrix} 0.2 & -0.4 & 0 \\ 0.4 & 0.2 & 0 \\ 0.4 & 0.2 & 0 \\ 0.2 & 0.6 & 0 \end{matrix} \right]
PTDF=⎣⎢⎢⎡0.20.40.40.2−0.40.20.20.60000⎦⎥⎥⎤