知识分享!潮流计算的数学模型及基本解法!

一、前言

       在给定电力系统的网络结构、参数及决定系统运行状态的边界条件后,系统的稳态运行状态得以确定。潮流计算通过数值仿真方法,为运行和规划人员提供电力系统的详细运行状态,从而分析系统在特定条件下的稳态特性。潮流计算是电力系统分析中最为基础且关键的任务,它为电力系统的运行、规划、安全性与可靠性分析以及优化提供了核心基础,同时也为电磁暂态和机电暂态分析奠定了起点。

       从数学角度来看,潮流计算的本质是求解由潮流方程描述的非线性代数方程组。潮流计算方法的发展与计算工具的进步密切相关。在早期,由于系统规模等因素的限制,无论是手工计算还是交流计算台模拟方法,都难以进行大规模电网的潮流分析。

鉴于潮流计算在电力系统分析中的关键作用,相关计算方法需满足以下基本要求:

可靠的收敛性:适用于不同系统和运行条件,确保计算结果的收敛性;

高效性:占用内存少,计算速度快;

灵活性:易于调整和修改,使用便捷。

      针对潮流计算算法的改进及新算法的提出,主要目的是为了更好地满足上述要求,提升计算精度与效率。

二、潮流计算基本模型

1)直角和极坐标系潮流方程

      对于N个节点的电力网络(地作为参考节点不包括在内),如果网络结构和元件参数已知,则网络方程可表示为

式中,Y为N×N阶节点导纳矩阵;V为N×1维节点电压列矢量;I为N×1维节点注入电流列矢量。如果不计网络元件的非线性,也不考虑移相变压器,则Y为对称矩阵。

      电力系统计算中,给定的运行变量是节点注入功率,而不是节点注人电流,这两者之间有如下关系:

式中,S为节点的注人复功率,是N×1维列矢量;S上一撇为S的共轭;E=diag[V],是由节点电压的共轭组成的N×N阶对角线矩阵。联立上述两式,可得

      上式就是潮流方程的复数形式,是N维的非线性复数代数方程组。将其展开,有

式中,j∈i表示所有和i相连的节点i,包括j=i。

      如果节点电压用直角坐标表示,即令Vi=ei+jfi,代入上式中有

其中

故有

以上即为直角坐标系的潮流方程。

      如果节点电压用极坐标表示,即令Vi=Vi∠θi:,代入潮流方程的复数形式中则有

因而

 

以上即为极坐标系的潮流方程。

2)潮流计算节点划分

      对于具有N个节点的电力系统,每个节点具有四个运行变量(例如,对于节点i,包括Pi,Qi,Vi和θi),因此整个系统包含4N个变量。所描述的复数潮流方程由 2N个实数方程组成。为了求解这些方程,需要给定2N个变量,剩余的2N个变量才可以通过求解得到。然而,这并不意味着任意选择2N个变量即可确保潮流方程的可解性。通常情况下,每个节点的四个变量中会有两个变量已知,另外两个则需求解。哪些变量作为已知量由节点的类型决定。

      对于负荷节点,其有功功率P和无功功率Q是由负荷需求决定的,通常情况下是不可控的。此类节点的特点是P和Q已知,而电压幅值V和相位角θ需要求解。这类节点被称为PQ节点。无注入的联络节点也可以视为一个P和Q已知的节点,其P和Q值均为零。

      对于发电机节点,由于励磁调节作用使得该节点的电压幅值保持不变,其有功功率由发电机的输出功率决定,因此该节点的P和V被给定,而θ和Q需通过求解得到。此类节点被称为PV节点

      由于平衡节点的P和Q无法预先给定,因此该节点的电压幅值V和相位角θ应被预先指定,这类节点也称为Vθ节点。平衡节点的功率值P和Q由潮流计算得出。平衡节点的选择主要是基于计算需求,通常有多种选择方式。由于平衡节点的功率值无法预先确定,为了确保潮流计算结果与实际情况一致,平衡节点通常选在具有较大调节余量的发电机节点。当潮流计算完成后,如果平衡节点的有功和无功功率与实际情况不符,需要通过调整其他节点的边界条件,确保平衡节点的功率值处于实际允许的范围内。

      综上所述,假设第N个节点被选为平衡节点,则剩余的n个节点(其中n=N−1)中,若有r个节点为PV节点,则剩下的n−r个节点为PQ节点。因此,除了平衡节点外,剩余n个节点的有功功率、n−rPQ节点的无功功率以及r个 PV节点的电压幅值是已知的。

三、潮流计算方法

1)高斯迭代法

      高斯迭代法是最早在计算机上实现的潮流计算方法,具有编程简便的特点,因此在某些应用领域,尤其是配电网的潮流计算中,仍然得到了应用。此外,该方法也常用于为牛顿-拉夫逊法提供初始值,尽管其收敛性不如高斯-赛德尔方法。

      高斯迭代法的主要缺点在于其导纳矩阵具有高度稀疏性,每行仅包含少数几个非零元素。因此,在每次迭代过程中,上一次迭代所得的电压值仅有少数几个对本次迭代的电压修正起到贡献,这使得节点电压在解空间中的变化较为缓慢,从而导致算法的收敛性较差。

2)牛顿-拉夫逊法

      牛顿-拉夫逊法是一种有效的非线性代数方程组求解方法,广泛应用于潮流方程的求解。该方法的收敛速度随着解点的接近而加快,具有二阶收敛性。

      牛顿-拉夫逊法在应用中可分为极坐标系和直角坐标系两种形式。其核心内容之一是雅可比矩阵,因此对雅可比矩阵的特性进行深入分析是十分必要的。首先,考虑直角坐标系下的雅可比矩阵,将其表示为:

其中各子块的元素由下式计算:

极坐标系下的雅克比矩阵可以表示为

各子块的元素由下式计算:

于是雅克比矩阵可以表示为

整理后有

3)直流潮流算法

      在某些应用场合,如输电网规划中,主要关注电力系统中有功潮流的分布,而无需计算各节点的电压幅值。此外,当计算精度的要求较低而对计算速度有较高要求时,可以通过简化潮流方程来加速计算。直流潮流算法便是在这种背景下提出的,专门用于研究电网中有功潮流的分布。

      直流潮流算法在解算过程中没有收敛性问题,且对于超高压电网,考虑到r≪x的情况,其计算误差通常保持在3%至10%之间,这足以满足许多对精度要求不高的应用场合。然而,直流潮流无法计算电压幅值(尽管也有研究尝试建立无功和电压幅值之间关系的直流潮流模型,但其计算精度较差,这种情况除外)。

4)快速解耦法—PQ分解法

      在使用牛顿-拉夫逊法进行潮流计算时,每次迭代都需要重新构造雅可比矩阵,并对其进行因子分解以求解修正方程。为了避免每次迭代都重复这一过程,研究者提出了一种定雅可比矩阵方法,通过固定雅可比矩阵来替代随着迭代过程不断变化的矩阵,这种方法被称为定雅可比法。此外,还结合电力系统的物理特点,发展了多种解耦潮流算法,其中20世纪70年代初提出的快速分解法是该阶段的主要研究成果之一。

      快速分解法通过对雅可比矩阵进行简化处理,但节点功率偏差的计算和收敛条件仍然保持严格,因此收敛后的潮流计算结果依然准确。由于方程的维数减少,且 B′和 B′′是常数矩阵,它们只需要在迭代开始时形成并进行一次因子分解,整个迭代过程中可以重复使用,从而显著提高了计算效率。快速分解法是一种定雅可比法,虽然其收敛速度为线性,但由于良好的鲁棒性和适应性,它在电力工业中得到了广泛应用,尤其适合在线计算。

四、潮流计算灵敏度分析与分布因子

      在电力系统的运行状态已知的情况下,有时需要分析某些变量的变化如何引起其他变量的变化。这一过程称为灵敏度分析。灵敏度分析对于理解系统在扰动下的响应至关重要,特别是在电力系统控制和优化中,能够提供关于系统稳定性和操作灵活性的重要信息。

      例如,为了调节某些关键节点的电压,需要利用可控变量与被控变量之间的灵敏度系数来分析哪些控制量的变化可以实现被控变量所需的变化。此外,还需要研究发电机的有功功率变化对支路有功潮流的影响,或者考察某条支路的开断如何导致潮流在网络中其他支路上的转移。通过灵敏度系数或分布因子的帮助,可以简化这些分析过程。

      由于系统的当前运行状态必须满足潮流方程,灵敏度分析和分布因子的计算通常基于潮流方程在给定运行点的局部线性化。通过局部线性化所得到的灵敏度系数和分布因子,本质上描述了所感兴趣变量之间的局部线性关系。这些分析工具广泛应用于电力系统静态安全分析、优化潮流、电网规划以及电力市场的阻塞管理等领域。因此,本节将重点讨论潮流计算中常用的灵敏度系数和分布因子。

1 灵敏度分析基本方法

1)常规灵敏度分析方法

电力系统的潮流计算可以用下面的一般性公式来描述:

式中,x为状态变量,如负荷节点的电压幅值和相角;u为控制变量,如发电机节点的有功功率和机端电压;y为依从变量,如线路上的有功功率;f为反映网络拓扑结构的非线性潮流方程。

      通常的潮流计算过程是:当网络结构和控制量u给定,从潮流方程求得状态变量x,进一步再求得依从变量y。如果系统的给定条件发生调整,例如控制变量u发生了Δu的变化,这时无需做完整的潮流计算,而可以通过灵敏度系数快速地把状态变量和依从变量的变化量Δx及Δy求得。这就是常规灵敏度计算的思路。把潮流方程在当前点线性化,得

式中,Sxu和Syu分别为u的变化量引起X和y变化量的灵敏度系数矩阵。计算方法如下:

      灵敏度矩阵的最大优点是将由非线性方程隐含确定的变量关系用明显的方式表达出来,不但物理概念清晰,而且可使分析计算工作简化。

2)准稳态灵敏度计算方法

      上述灵敏度系数计算方法隐含了一个假设,即当控制变量发生变化时,该变化将持续作用于系统,直到达到新的稳态运行点,而忽略了期间的动态变化过程。然而,实际电力系统的运行并不总是遵循这一模式。例如,当某个节点的功率发生变化时,实际运行过程中,该变化量将被系统负荷的频率响应特性和发电机的频率调节特性共同消化。因此,新的稳态运行点实际上涉及多个控制变量的调整。再如,当平衡节点的功率发生改变时,传统方法计算得到的灵敏度系数为零,但实际情况是,其他发电机必定会调整其出力,以共同承担系统中的功率不平衡。由此可见,传统的灵敏度系数计算方法未能充分反映系统的实际运行情况。准稳态灵敏度分析方法能够克服这一不足,提供更加准确的分析结果。

      准稳态灵敏度分析方法的思路是:将控制变量的改变量区分为初始改变量Δu0和最终改变量Δu;再根据系统的具体特点和控制变量的物理特性,认为只有最终改变量Δu才会作用于新的稳态运行点。从而在Δu0和Δu之间建立相互关系如下

由此得到准稳态灵敏度关系

其中准稳态灵敏度系数为

3)ΔVD和ΔVG之间的灵敏度关系

      当发电机母线电压改变ΔVG时,假定负荷母线的无功功率QD不变,这时负荷母线的电压将发生变化,改变量是ΔV。在电力系统负荷节点的电压控制中经常要用到ΔVD和ΔVG之间的灵敏度关系。下式

      是ΔVD和ΔVG之间的灵敏度矩阵,它是无量纲的。利用灵敏度矩阵SDG,可以知道哪些发电机对控制负荷母线电压最有效,并可实现对负荷母线电压的定量控制。

4)ΔVD、ΔVG和ΔQG之间的灵敏度关系

      在有些应用场合,为了使控制更直观、更符合实际,需要把ΔQG作为控制变量,研究ΔVD和ΔVG与发电机无功输出变化量ΔQG之间的灵敏度关系。下式

式中,RDG和RGG分别为ΔVD和ΔVG与ΔQG之间的灵敏度矩阵,二者都具有阻抗的量纲。在将-B"增广了发电机节点后的矩阵的逆中,取出发电机节点相关的列,其中与负荷节点相关的行是RDG,与发电机节点相关的行是RGG。

5)ΔVD和Δt之间的灵敏度关系

      调节可调变比变压器的分接头可以改变负荷母线的电压。假定变压器变比改变Δt,若此时发电机母线电压及负荷母线无功注人不变,则由灵敏度关系

为ΔVD和Δt之间的灵敏度矩阵。

2 分布因子

      在电网分析中,有时需要知道支路有功潮流的变化,这一变化可能是由于电网中一条支路或几条支路断开引起的,或者是由于发电机有功输出功率变化引起的。或者可用分布因子来描述。

1)支路断开分布因子

      基态情况下支路l的有功潮流为P,支路开断会引起支路k上的潮流发生变化,变化量是ΔPlk,两者之间的关系用支路开断分布因子Dk-l表示:

2)发电机输出功率转移分布因子

      发电机输出功率转移分布因子定义了由于发电机有功输出功率变化引起的支路潮流的变化量。若节点i有功变化ΔPi时引起支路k的有功功率变化为ΔPik,则有

式中,Gk-i为发电机输出功率转移分布因子。

五、潮流计算中的特殊问题

1. 节点转换

      在潮流计算中,当给定的原始条件与实际运行情况不符,或电力系统的运行方式导致某些元件的参数超出允许范围时,潮流计算结果可能出现不合理的现象。此时,需要调整潮流计算中的数据,以获得合理且可行的计算结果。常见的潮流调整计算涉及节点类型的转换,主要包括以下几种情况:

(1) 当发电机节点的无功功率超出设定范围时,该节点由PV节点转换为PQ节点;

(2) 当负荷节点的电压超出设定范围时,该节点由PQ节点转换为PV节点;

(3) 在处理外部网络等值时,可能会遇到需要在边界上设置多个平衡节点的潮流计算问题。

2. 中枢点电压控制

      与电压控制密切相关的一个问题是无功功率的合理分布及其对有功网损的影响。电力系统中母线电压水平主要与无功功率的平衡和分布有关。调节发电机的无功输出以及在电网中接入储能元件都会影响系统的母线电压。通过投切并联电容器或电抗器,可以有效改变系统中无功功率的分布,从而改善母线电压,使其维持在设定的范围内。

      合理的无功补偿不仅可以减少输电线路上的无功功率流动,还能降低有功和无功网损。在超高压远距离输电系统中,线路的充电无功功率较大,因此需要加装并联电抗器来吸收过剩的无功功率。这一措施能够避免线路端节点电压偏高,同时防止无功流入电网并引起网损。

      为了有效进行无功电压控制,必须充分利用无功电压的局域性特性,应尽量实现局部平衡,避免无功功率的远距离传输。因此,采用无功电压分区控制是一种有效方法。通过灵敏度公式,将与中枢点电压耦合紧密的无功源节点分在同一区域,并利用聚类分析方法将电网划分为多个区域,在每个区域内调控无功源,以确保中枢点电压控制在期望值范围内。

      此外,也可以利用中枢点电压与变压器分接头之间的灵敏度关系,计算出变压器变比改变量,通过调整变压器变比来实现中枢点电压的控制。

3. 潮流方程的多解性与病态潮流

1) 潮流方程的多解性

      潮流方程是一组非线性代数方程。从数学角度来看,潮流方程可能具有多个解,这些解可以分为以下几种情况:

(1)存在实际意义的解;

(2)存在数学上满足潮流方程的解,但在实际运行中不可实现;

(3)给定的运行条件下,潮流方程无解或无实数解。

在潮流计算中,常常会遇到不收敛的情况,可能是由于以下原因:

(1) 潮流方程本身无实数解,因此无法收敛;

(2) 潮流方程有解,但潮流算法本身存在缺陷,导致计算不收敛。

      即使潮流计算收敛,如果初值选择不当,也可能导致收敛到不符合实际运行的解。对于大规模电力系统,目前尚未有有效的分析方法来处理潮流多解问题。在实际电力系统分析中,由于节点电压通常接近标定值1,因此常认为从平衡启动得到的潮流解具有实际意义。如果采用实时数据进行潮流计算,由于状态估计结果已经接近实际情况,因此基于此的潮流解也被认为是有意义的。从数学角度来看,研究潮流方程的解的存在性、解的个数以及如何确保潮流计算收敛到可运行解,仍然是一个复杂的课题,至今尚未有很好的解决方案。因此,本文将不再对潮流多解问题进行深入讨论。

2) 病态潮流

      在某些潮流计算问题中,例如重负荷系统、环状放射型系统以及具有邻近多解的系统,潮流方程可能无解;即使有解,常规方法也难以收敛。这种情况被称为病态潮流。对于病态潮流问题,通常需要采用特殊的计算方法。

      常用的病态潮流计算方法包括最优乘子法和非线性规划法。当潮流方程有解时,目标函数会随着迭代的进行逐渐减小,直到接近零值(或非常小的正数)。如果潮流方程无解,目标函数不会再下降,而会保持在一个有限的正值,此时的解可视为潮流方程的最小二乘解。

六、潮流计算问题的扩展

      随着国民经济的持续发展,电力需求日益增长,且对电力质量和供应安全提出了更高的要求。为满足这些要求,电力系统的规划设计和运行控制等环节需进行更为复杂的潮流分析和计算。因此,传统潮流计算的概念得到了进一步的扩展,涵盖了以下几方面:

可调变量的调整:为保持系统的运行状态在正常范围内,必须对系统中的可调变量进行适当调整,进而消除线路潮流或节点电压超出预设范围的情况。这需要进行符合特定约束条件的潮流计算。

优化潮流:在确保满足负荷需求及其他运行约束的前提下,为实现系统的经济运行目标,如最小化发电成本或最小化网损,提出了优化潮流的概念。

随机潮流:由于负荷需求和其他系统参数存在不确定性,尤其在电力系统规划设计阶段,未来的负荷预测存在较大误差,甚至在实时运行中也不可避免地受到干扰。为研究负荷不确定情况下的潮流分布,引入了随机潮流(或概率潮流)理论。

开断潮流分析:当系统发生故障或部分元件退出运行时,系统将进入新的稳态。此时,需要研究故障状态下的潮流分布,以了解元件开断后的系统响应及对其他元件的影响,帮助调度人员采取适当的措施应对过负荷或电压异常。

电力市场环境下的潮流组成分析:在电力市场中,需要对输电服务进行独立定价,并计算市场参与者对输电网络的使用程度。为此,研究潮流的组成及其动态演变成为了电力系统分析中的重要课题。

1) 变量的划分

      在电力系统建模中,涉及多个变量类型,其特性各异,具体分类如下:

网络结构变量:由系统中各元件的连接方式及开关状态决定,可通过关联矩阵A表示。

网络元件参数:包括输电线的电阻、电抗和充电电容,变压器的电阻、漏抗和变比,并联电容器和电抗器的容量等。这些参数一般为固定值,部分可调整的如变压器的变比可作为控制变量。

不可控变量或干扰变量:主要指由负荷需求决定的功率,通常是不可调的,且其值受各种外部干扰影响,呈现不确定性,通常视为随机变量。

控制变量:系统中可调节的变量,包括发电机的有功功率、机端电压、可调无功电源的电压或无功输出功率、可切换的电容器与电抗器、电压调节变压器的变比等。通过调整这些控制变量,可以实现对系统运行状态的调节。

依从变量:在给定网络结构、元件参数、负荷需求及控制变量的情况下,系统的运行状态由依从变量确定。依从变量包括各节点的电压幅值和相角、发电机的无功输出功率、网损以及各线路的潮流等。

2) 约束方程

      电力系统的运行必须在一定的物理约束条件下进行,这些约束在数学上构成了潮流计算的约束条件。约束分为对控制变量和依从变量的限制。

对控制变量的约束:包括发电机有功功率和机端电压上下限,调压设备和无功电源的控制电压限制,可调电容器和电抗器的容量限制等。

对依从变量的约束:包括负荷母线电压幅值的上下限,发电机母线无功功率的约束,线路的潮流限制等。

3) 潮流计算问题的扩展

常规潮流:常规潮流计算是指在已知网络结构、元件参数、负荷需求和控制变量的情况下,确定系统的状态变量。这是传统潮流计算的基本形式。

约束潮流:在常规潮流的基础上,约束潮流进一步引入对依从变量的约束。若依从变量超出限值,则需要调整控制变量,以确保满足所有约束条件。

动态潮流:传统的常规潮流计算假设一个平衡节点来吸收不平衡功率。然而,实际系统中,由于故障、负荷变化等因素,功率不平衡往往通过多个发电机和负荷的协调来调整,因此需要考虑系统的准稳态过程。动态潮流算法能够有效解决此问题,并考虑多个平衡节点。

随机潮流:当系统的负荷和发电机输出功率具有不确定性时,传统的确定性潮流计算无法准确反映系统的实际运行状态。随机潮流计算引入了概率分布函数,分析不同情境下的潮流分布。这通常采用简化模型,如假设负荷为正态分布的随机变量,或者利用直流潮流方程来描述有功潮流的线性关系。

最优潮流:最优潮流问题旨在确定控制变量的最优值,以实现系统的经济运行目标,如最小化总发电成本或网损。约束条件包括控制变量和状态变量的上下限,以及线路功率限制等。

开断潮流:电力系统的开断潮流计算用于分析系统在元件开断后的潮流分布,尤其是在故障发生时,评估是否会引起其他元件过负荷或电压异常。这对于指导电网调度人员采取应急措施具有重要意义。

七、最优潮流及其解法

      为了对最优潮流的算法有清晰的了解,这里先对最优潮流算法进行分类。不同的最优潮流算法在处理约束的方法、迭代过程中对哪些变量进行修正以及修正量的修正方向等几方面有明显不同。这里采用三维分类模式:按处理约束的不同分类;按选择的修正量分类;按修正量的修正方向分类。

1.按处理约束的方法分类

      根据不同最优潮流算法处理约束条件的不同,可分为三类方法,即罚函数类、Kuhn-Tucker罚函数类(简称KT罚函数类)和Kuhn-Tucker类(简称KT类)。

2.按修正的变量空间分类

      在迭代过程中,可以是同时修正全空间变量,包括控制变量u和状态变量x,也可以只修正控制变量u,而状态变量x通过求解约束方程(潮流方程)得到。前者称为直接类算法,后者称为简化类算法。

3.按变量修正的方向分类

      确定变量的修正方向有三类方法。第一类为梯度类算法,包括梯度法即最速下降法,这类方法具有一阶收敛性;第二类为拟牛顿类算法,如共轭梯度法和各种变尺度法,这类方法的收敛性介于一阶和二阶之间;第三类为牛顿法,如海森矩阵法,这类方法具有二阶收敛性。

4. 电力市场下的潮流跟踪问题

      电力系统市场化运营以后,系统将按照市场的规则运行。由于发电、输电、配电逐步分离,输电网开放,就需要为输电服务单独定价和支付相应费用,这包括占用输电网输电成本的分配计算和输电网损的分配计算等。研究市场参与者发出或接受的功率在网络中的流动,以确定其占用输电网络的份额,是一种自然的研究思路。潮流跟踪法在计算过程中,利用了节点的功率平衡特性,即基尔霍夫电流定律,可以得到结构特殊的网络方程。具体不在赘述。

参考书目:《高等电力网络分析》—张伯明 陈寿孙 严正—清华大学出版社!!

注:以上内容为个人总结,难免有遗漏之处,欢迎留言交流讨论,批评指正,完善这份工作!!

八、程序介绍

      总结到这里,推广一个基础的潮流计算程序,程序的适用性强,考虑了线路载荷与发热的关系。方便初学者学习,下面对程序做简要介绍!

程序适用平台:Matlab

程序结果:依次为母线出力、机组出力、线路热量。

部分程序

%%  电源和负荷
hours= 1:1:24;
num_hours=length(hours);
% 24小时的负荷和发电量(步长时间1小时)
%%% 居民负荷!!
peak_factor=0.12;
% 工业负荷!!ind=[
 % 三级负荷结构ter=[
% 光伏发电PV=[
% 风力发电WT = -0.1 + rand(1, num_hours)*1.1; 
% 水力发电厂hydr = ones(1,num_hours);
% 基础参数S_base=1000; % kVA, 视在功率基准
% 热量约束Ilim=60; % A
% 节点处的有功功率标幺值每行表示每个节点的负荷或发电机。
% 前三行表示负载。第4行和第5行代表发电机(水力发电厂和光伏发电),
% 发电值设置为负号!!
P_nom =[ % kW
% 有功功率和无功功率关联性
tg_phi=[Q_nom = P_nom.*tg_phi; % 无功功率
%% 线路功率参数
P_loads = zeros(node_num,num_hours); 
Q_loads = zeros(node_num,num_hours); 
% 仿真每小时的功率
S_car = (P_loads + 1i * Q_loads)/S_base; 
% 电压和电流输出
v = zeros(node_num,num_hours);

部分内容源自网络,侵权联系删除!

欢迎感兴趣的关注并私信作者程序名称获取完整版代码,小编会不定期更新高质量的学习资料、文章和程序代码,为您的科研加油助力!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值