- 博客(10)
- 收藏
- 关注
原创 自动驾驶数据革命:半自动Occupancy标注如何定义3D感知新时代
鸟瞰图(BEV)作为当前主流的感知模式,具备描述环境的绝对尺度和无遮挡的优势,同时为多模态数据提供了统一的特征表示,便于众多下游任务的使用。然而,BEV感知缺乏高度信息,无法提供完整的3D场景表示。针对这一问题,2022年Tesla AI Day上,Elon Musk提出了将Occupancy(占据网格)应用于算法流程中,以捕捉真实世界的密集3D结构。Occupancy感知技术通过体素化世界推断每个体素的占用状态,具备对开集对象、不规则形状车辆和特殊道路结构的强大泛化能力。
2025-03-28 19:09:18
1047
原创 SuperGPQA: 突破285个学科边界的AI评测新范式-探索大语言模型的真实能力边界
SuperGPQA 的开源发布不仅填补了AI评测领域的重要空白,更开创了一个新的研究范式。
2025-03-24 18:30:49
860
原创 最全具身智能数据集分享系列 | 全球有哪些高质量具身智能数据集(附下载链接)
随着大模型和机器人技术的发展,具身智能(Embodied AI)赋予人工智能系统物理形态以实现与环境的互动和学习。从动作编程到人类遥操作,从机械臂到灵巧手,从硅谷到中国,具身智能在软硬件层面逐步建立起发展范式。
2025-03-14 16:28:17
1492
原创 最全具身智能数据集分享系列二 | 视觉语言动作(VLA)多模态模型数据集
VLA是一类专门设计用于处理多模态输入的模型,通过结合视觉和语言处理,VLA 模型可以解释复杂的指令并在物理世界中执行动作。VLA模型的开发旨在应对具身智能中的指令跟随任务。
2025-03-13 18:32:15
1535
原创 大模型推理能力的数据基石:运筹学作为LLM训练数据的独特价值
运筹学问题为大模型的推理能力训练提供了丰富的场景,从线性规划的连续变量优化,到整数规划的离散决策问题,从具有阶段性的动态规划,到网络流中的图优化问题,每类问题都考验着模型不同维度的推理能力。
2025-03-12 18:41:58
873
原创 数据科学竞赛界的Manus?多智能体框架AutoKaggle开源,大幅降低数据科学门槛
AutoKaggle为数据科学家提供了一个端到端的数据处理解决方案,帮助简化和优化日常数据科学工作流程,同时我们也极大的降低了数据科学的门槛,可以帮助更多没有相关背景的使用者做出有价值的探索。
2025-03-11 18:02:46
1340
原创 模型Evaluation|文本大语言模型评估体系:从能力维度到方法论
同样,对于文本大语言模型的性能评估,也需要通过多维度的考量。评价文本模型的方法主要分为客观的确定性自动化评估与量化自动化评估,和具有更多主观性的主观人工评估,通过客观评价标准体系和主观专业判断的结合的评估体系,文本大模型的评估可以更加全面,专业和具体。文本理解与生成、图像识别与创作、视频处理与合成,这些任务有着各自的技术特点和应用场景,需要差异化的评估策略,因此,为了让读者更清晰地理解不同类型大模型的评估特点,我们将通过文本、图像、视频三个系列文章,分别剖析这些模型的评估体系。
2025-03-10 18:34:37
1378
原创 模型Evaluation|如何为您的AI模型选择正确的评估方法
模型评估的每一个维度都有其独特的重要性,而评估方法的选择直接决定了我们用什么样的标准衡量这些维度。选择合适的评估方法不仅能帮助我们了解模型的表现,还能指导后续的改进与优化。
2025-03-03 18:30:38
1197
原创 模型Evaluation|AI模型评估的维度有哪些?
在这篇文章中,我们将介绍AI模型评估的主要维度,包括模型性能、模型效率、鲁棒性、公平性和伦理维度、通用型和安全性,我们将分别介绍不同维度对应的模型性能与表现,以及不同维度对应的评估指标。提高模型的可解释性,不仅能增强用户信任,也能帮助开发者发现模型的潜在问题。鲁棒性维度关注的是AI模型在面对不确定和变化的输入时,是否能稳定、正确地工作,包括对噪声和异常输入的处理能力和对对抗性攻击的抵抗力。效率维度关注的是AI模型在资源利用方面的表现,尤其是在实际应用中,效率往往与模型的可用性和成本密切相关。
2025-02-25 18:34:01
733
原创 模型Evaluation|AI模型评估是什么,为什么AI模型评估越来越重要?
在模型的训练和运行过程中,资源的浪费不仅带来更大的成本投入,也会影响模型的最终效果与性能。通过模型评估,开发者可以优化模型的结构和算法,同时更加精准地提出训练数据需求,为AI模型搭建更加适配理想性能的高质量训练数据集,提高模型训练效率,在合理控成本的同时不断提升模型性能,更好地满足目标需求。这种“算法偏见”不仅影响模型的准确性,还可能导致不公平的结果,AI模型评估还可以帮助开发者识别和消除这些偏见,确保决策的公平性。这种持续的改进不仅能提高现有系统的表现,也能推动新的算法和技术的产生。
2025-02-25 16:50:34
962
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人