交通事故成因分析竞赛 · 分享
一等奖 “沐威智造” 团队
来自同济大学的“沐威智造”四个小伙子用最专业的思维深度剖析了交通事故背后的诱因,并且用极致绚丽的可视化技术展示出来,通过外部数据的合理应用,系统地给出了解决方案。
“沐威”的作品主要利用描述性统计、数据融合、数据挖掘等方法,结合百度开源LBS服务的开发者API接口及GIS地理信息系统,挖掘事故的地理位置信息,将事故进行区域划分,分别总结了事故高发的各项诱因。
提出从“需求侧服务-供给侧提升”两个方面缓解贵阳交通事故问题。需求侧服务:开发辅助安全驾驶APP,根据GPS、车辆和驾驶员属性、天气等信息为驾驶员提供警示提醒。供给侧提升:通过合理布置标志标线、隧道灯光,利用“错视觉”等方法提升基础设施服务水平,降低事故发生概率。
点击图片可以查看高清大图(下同)
经分析,追尾相关事故占比29.16%,未按规矩让行比例达到了40.67%,并将各类事故按月份进行了统计。
性别差异
结论
-
交通事故中男性驾驶员人数占92%,超过女性驾驶员10倍以上;
-
相较于中国驾驶员性别比例,男性驾驶员事故风险是女性驾驶员的4倍;
-
女性驾驶员在各类事故(1-9)中所占比例保持基本稳定,其中事故四(开关车门)比例最高为10.4%。
双参数分析:事故情形与星期分布


双参数分析:车辆颜色与事故时间
根据贵阳市经纬度,一月平均日出时间为07:42,日落时间18:12;
根据贵阳市经纬度,五月平均日出时间为06:15,日落时间19:25;
双参数分析:年龄与事故类型
双参数分析:驾龄与事故类型
双参数分析
车牌区域与事故类型
双参数分析:车辆品牌与事故类型
双参数分析:事故路段与事故类型
双参数分析:事故地点与事故类型
双参数分析:车辆颜色与天气状况
结论
-
在冬/春季节下,6-20摄氏度区间显现出了较强的事故风险,表现为显著高于事故均值;
-
高风险的温度区间在贵阳市占比大于60%,对道路交通安全有持续性和反复性的危害。
结论
-
自培和无证驾驶占有比例将近一半,可以判断驾校培训能够一定程度上降低事故发生率;
-
除自培和无证驾驶外,占有比较高的驾校包括十一培、铁二局驾校、消防驾校、全林驾校、顺一驾校、鑫鑫驾校以及吉源驾校。
结论
-
除十一培驾校之外,大部分驾校的费用在4600-6000元之间,在八家驾校中,人气较高的是全林驾校、中铁二局驾校和鑫鑫驾校,较低的是顺一驾校、吉源驾校和十一培驾校。
-
可以发现,十一培在较低的人气度和较低的驾校收费基础上,事故责任人占有比较高,故可认为其培训效果相对较差,类似的还包括吉源驾校。而全林驾校、中铁三局驾校在较高的人气度基础上,事故责任人占有比较低,可认为其培训效果相对较好。
问题
1.隧道防撞墙色彩设置不合理;
2.隧道灯光设置不合理;
3.隧道口亮度发生突变(黑洞、白洞效应);
4.隧道口交通标识位置不当;
5.隧道口缺少减速提示。
解决办法
1.彩色铺装
2.视觉标线
3.警示防撞栏
4.减速标线
5.减速标线
驾驶助手 - by 沐威交通
大数据分析是一种帮助我们认识问题,挖掘信息的方法,通过多源的数据融合与探索,能有效的提高数据的利用价值,获得数据背后所反映的客观现实。当然,数据分析的最终目标是为我们提供解决问题的方法途径,使交通管理与决策更加科学。
沐威智造,译为:Movingway,是指在不断变化迁移的道路系统中,利用智能化的方法寻求问题的答案。
在参加本次比赛的过程中,我们受益良多,来自全国各地的参赛队伍从多个角度解析交通数据,涉及到采集、分析、关联、预测、管理等多个角度,也为我们开拓了研究视野。闻道有先后,术业有专攻,在比赛过程中,我们还结交到了许多资历颇深的数据极客,学习到了各种分析处理的方法,让我们学会“用统计的眼光看待数据,用人文的角度思考问题,用交通理念提供方案”,这样使我们的分析与研究不断臻于至善。
也希望在未来可以和许多极客们切磋交流,互相学习,精诚行路,如霆如雷!