问题触发的算法模型响应机制探索

本文作者:许正军   袁 岳

随着数字技术的飞速发展和向各行业的应用渗透,数据在不断产生和汇聚。数据已成为各行业发展的基础性要素和战略性资源。以问题为导向,“用数据说话,用数据决策,用数据管理,用数据创新”已成为各行业数字化转型和高质量发展的主要抓手。针对问题的分析研判也正由经验判断向数据分析转变,“数据赋能”正在浸润各行各业。

由此,从数据到问题,即通过数据分析提出问题解决对策,便成为数据赋能的主要范式。在此范式下,人们往往在针对场景问题的数据采集、数据处理和分析、可视化监测、趋势判断和预警预测等工程技术方面倾注大量的投入,而对于问题的本原,即对问题产生的根源、内容、逻辑、性质和类别以及如何捕捉、识别、提炼和响应等方面往往缺少足够的关注。亦即,在数据赋能应用过程中,缺乏对问题浮现、问题识别、问题提炼和问题响应等业务环节足够的渗透与智能投射,从而导致以问题为导向的数据赋能在上述业务环节存在“梯度消失”。

以问题为导向的数据赋能应贯穿从问题浮现到问题解决的全过程,包括问题浮现、问题识别、问题提炼和问题响应(包括响应问题、确立解决方案及后续解决执行)各环节。亦即,在数据赋能应用过程中,应从问题浮现、问题识别、问题提炼和问题响应的全链条角度,以问题数据为材料,以算法模型为智能引擎,实现数据智能在各环节的渗透与投射,消除数据赋能在各环节的“梯度消失”。这其中,算法模型及其响应机制至为关键。

为此,本文以扎根理论(Grounded Theory)基于原发问题提炼阐发的社会学研究方法,提出问题触发的算法模型响应机制构建思路,旨在通过算法模型的构建、应用和迭代,建立从问题浮现到问题识别、问题提炼和问题响应的全过程数智化的响应机制。

一、总体思路

众所周知,数据承载着信息,信息蕴藏着知识,知识可以赋能智慧应用以创造价值。随着数字技术的飞速发展和在各行各业的深入应用,各类场景问题可通过数字化技术进行数字化记录,形成问题数据。对这些问题数据进行收集(形成问题库)、处理和分析,挖掘其中的信息和知识,为问题研判、问题响应和问题解决提供决策依据。这构成了以问题为导向的数据赋能的基本逻辑。

实际过程中,大多只停留在数据采集、数据处理和分析、可视化监测、趋势判断和预警预测等工程技术方面(参见附图1),对于问题的本原,如问题产生的根源、内容、逻辑、性质和类别以及如何捕捉、识别、提炼和响应等方面缺乏足够的考虑。即在“数据业务化”层面涉及不充分。

附图1  从数据采集到预测预警的示意图

问题触发的算法模型响应机制将立足于从原发问题的本原探究出发,从问题浮现、问题识别、问题提炼和问题响应等各环节着手,以问题数据为材料,以算法模型为智能引擎,建立从问题浮现到问题识别、问题提炼和问题响应的全过程数智化的响应机制(参见附图2),实现“数据赋能”贯穿从问题浮现到问题解决的全过程。

附图2  问题触发的算法模型响应机制总体思路

从附图2可见,问题浮现是整个机制的起点,问题响应是整个机制的终点,二者都是问题数据的来源——前者是问题的初始来源,后者是问题解决成效的反馈,并且构成了一个问题从浮现到解决的闭环。通过对问题浮现和问题响应的数据收集和处理,形成问题数据库,就形成了问题触发的算法模型响应机制构建之源,这也是问题“业务数据化”过程。问题识别和问题提炼是问题“数据业务化”的核心,是从问题浮现到问题响应的智慧转换器,而智慧之源来自于算法模型。算法模型封装了多种基础算法和针对各类垂直应用、特定任务解决能力的智能引擎,这些算法和引擎通过对问题数据的分析和挖掘,高效精准地识别问题的来源、特征、内容、类别和其它相关属性(如紧急事件、突发事情、热点事情或其它难点痛点堵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值