Datawhale
作者:赵楠、杨开漠、谢文昕、张雨
寄语:本文针对5大机器学习经典算法,梳理了其模型、策略和求解等方面的内容,同时给出了其对应sklearn的参数详解和代码实现,帮助学习者入门和巩固机器学习理论知识。
作为Datawhale机器学习开源教程,主要对经典算法:线性回归、朴素贝叶斯、EM算法、条件随机场和支持向量机,给出了完整的学习路径,同时对学习内容进行梳理,并给出了Python代码实现,避免成为调包侠,做到知其然知其所以然。
开源贡献
开源贡献:赵楠、杨开漠、谢文昕、张雨
赵楠
技术和算法工作者
知乎:https://zhuanlan.zhihu.com/mrhomer
杨开漠
五邑大学计算机硕士
Github:https://github.com/km1994
谢文昕
上海交通大学博士
张雨
复旦大学在读博士
Github:https://github.com/Drizzle-Zhang
开源内容
机器学习初级算法共涉及五部分内容:线性回归算法、朴素贝叶斯、EM算法、条件随机场和支持向量机。
项目链接:https://github.com/datawhalechina/team-learning/blob/master/机器学习算法基础
首先,每个算法开始模块会给出本章的学习知识点梳理,帮助学习者对所学算法有一个整体宏观的认知。
然后,针对每个知识点要进行详细的讲解,帮助学习者深入学习每个知识点。
最后,将算法的sklearn参数进行了详细的介绍,并给出了Python代码实现,帮助学习者完整动手实践。
学习路径
下图为机器学习经典算法的完整学习路径
开源地址
https://github.com/datawhalechina/team-learning/blob/master/机器学习算法基础
(或阅读原文)
“为开源贡献者点赞↓