回归
回归(regression) 是监督学习的另一个重要问题。
回归用于预测输入变量(自变量) 和输出变量(因变量) 之间的关系, 特别是当输入变量的值发生变化时, 输出变量的值随之发生的变化。
回归模型正是表示从输入变量到输出变量之间映射的函数。
回归问题的学习等价于函数拟合: 选择一条函数曲线使其很好地拟合已知数据且很好地预测未知数据(参照1.4.2节) 。
回归的过程

回归问题的分类
回归问题按照输入变量的个数, 分为一元回归和多元回归;
按照输入变量和输出变量之间关系的类型即模型的类型, 分为线性回归和
非线性回归。
回归学习最常用的损失函数是平方损失函数,
在此情况下, 回归问题可以由著名的最小二乘法(least squares) 求解。
回归问题的应用
许多领域的任务都可以形式化为回归问题,
比如, 回归可以用于商务领域, 作

回归是监督学习中的关键问题,涉及输入与输出变量的关系预测。通过函数拟合,选择模型以适应已知数据并预测未知数据。常见的损失函数是平方损失,常用最小二乘法求解。回归广泛应用于市场趋势预测、产品质量管理和投资风险分析等领域。例如,基于历史股票数据和影响因素学习回归模型,预测未来股价,但这是一个复杂的问题,因为影响股价的因素众多。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



