poj 2286 (自己对IDA*的一些理解)

原博客地址:http://blog.csdn.net/t1019256391/article/details/9257243

15s的时间,150000kb的内存,一眼就让人想到广搜,但状态实在太多,3^25-1种吧,想写又没下手。。。

其实这是一道IDA*的题目。

顺便讲一下自己对IDA*的理解:

1、什么是IDA*?

是结合深搜和广搜二者优势的一种算法,深搜内存消耗少,路径容易保存,状态少,但不能保证最优解。广搜能找到最优解,但内存开销大,状态多,代码长。 而IDA*就是二者的完美结合。它在深搜的基础上人为的增加一个deep(搜索深度),一旦当前深度大于等于这个deep则直接返回,然后deep++重新搜索。这样就保证了解的最优性。这就是ID。而通过对题目的分析,找到一个好的估价函数h(),用来描述当前状态到目标状态的估计值(理想值),用now+h()>deep来剪枝,这就是IDA*。

2、什么情况下用IDA*?

内存紧,状态多判重复杂,问题一定有解(或者无解情况能判断出来)。

这道题要求使得中间8个数都一样,可以得出,每移动一次,中间8个数最多只会改变1个,所以我们把

8 减去当前8个数中出现最多的次数 设计成我们的估价函数h,一旦当前深度now+h()超过了我们的deep,则剪枝。

这题蛋疼的地方就是做转换的时候数组的移动,不过可以事先用一个辅助数组来存下每次要交换的点。

本以为代码会很长,写完后发现还不到100行。

这题也是一个很好的IDA* hdu 1560

    #include<iostream>  
    #include<cstdio>  
    #include<algorithm>  
    #include<cstring>  
    #include<vector>  
    using namespace std;  
    int deep;  
    vector<int> ans;  
    int dig[8]={7,8,9,12,13,16,17,18};  
    int a[25];  
    //循环移动数组,,后一个数字等于前一个数字
    int move[8][15]=  
    {  
        {0,1,23,3,1,7,3,12,7,16,12,21,16,23,21},  
        {0,2,24,4,2,9,4,13,9,18,13,22,18,24,22},  
        {0,11,5,10,11,9,10,8,9,7,8,6,7,5,6},  
        {0,20,14,19,20,18,19,17,18,16,17,15,16,14,15},  
        {0,24,2,22,24,18,22,13,18,9,13,4,9,2,4},  
        {0,23,1,21,23,16,21,12,16,7,12,3,7,1,3},  
        {0,14,20,15,14,16,15,17,16,18,17,19,18,20,19},  
        {0,5,11,6,5,7,6,8,7,9,8,10,9,11,10}  
    };  
    int ret[8]={5,4,7,6,1,0,3,2};   //还原数组  
    bool isend()  
    {  
        int tmp=a[7];  
        for(int i=1;i<8;i++)  
        {  
            if(a[dig[i]]!=tmp)  
                return false;  
        }  
        return true;  
    }  
    int h()  
    {  
        int maxn=0;  
        int tmp[4]={0};  
        for(int i=0;i<8;i++)  
        {  
            tmp[a[dig[i]]]++;  
        }  
        maxn=max(tmp[1],max(tmp[2],tmp[3]));  
        return 8-maxn;  
    }  
    void change(int k)  
    {  
        a[0]=a[move[k][2]];  
        for(int i=1;i<15;i+=2)  
        {  
            if(i==13) a[move[k][i+1]]=a[0];  
            else a[move[k][i+1]]=a[move[k][i]];  
        }  
    }  
    bool dfs(int now)  
    {  
        if(now==deep) return isend();  
        if(now+h()>deep) return false;  //剪枝
        for(int i=0;i<8;i++)  
        {  
            change(i);  
            ans.push_back(i);  
            if(dfs(now+1)) return true;  
            ans.pop_back();  
            change(ret[i]);  
        }  
        return false;  
    }  
    int main()  
    {  
        while(scanf("%d",&a[1])&&a[1])  
        {  
            ans.clear();  
            for(int i=2;i<=24;i++)  
            {  
                scanf("%d",&a[i]);  
            }  
            if(isend())  
            {  
                printf("No moves needed\n");  
                printf("%d\n",a[7]);  
                continue;  
            }  
            deep=1;  
            while(dfs(0)==false)  
            {  
                deep++;  
            }  
            for(int i=0;i<ans.size();i++)  
            {  
                putchar(ans[i]+'A');  
            }  
            printf("\n%d\n",a[7]);  
        }  
        return 0;  
    }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值