python SVD奇异值分解

该文介绍了如何利用奇异值分解(SVD)对灰度图像进行处理。通过SVD将图像分解为U、S、VT三部分,S中的值表示向量重要性。随着保留的奇异向量数量增加,图像的重构效果逐渐改善,直至恢复原始图片。示例代码展示了从使用单个向量到所有向量的过程。
摘要由CSDN通过智能技术生成

svd函数会返回三个分解部分U、S、VT,其中S是一个对角矩阵。
S中的每个值与VT的行向量以及U中的列向量对应,默认按照从大到小的顺序排列,表示与其对应向量的重要性

奇异值大小差别很大
在这里插入图片描述

原图在这里插入图片描述
灰度化在这里插入图片描述
接下来使用前n个向量进行叠加:

1个在这里插入图片描述
20个
在这里插入图片描述
100个在这里插入图片描述
1000个在这里插入图片描述
全部:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值