最近装了好多次环境了,踩了N多坑,记录一下,尽量安装的先后顺序也不要换,因为一般情况下,驱动安装不好的话,重装系统作为解决方法的概率比较大,所以尽量先装驱动比较好。
最好是刚刚重装好的崭新的ubuntu这样比较容易成功!
按照以下步骤,一步一步安装,一定可以安装成功!如果安装失败的话,我直播吃……咳咳,总之肯定能装成功的…
首先,记得改主板设置,记得改主板设置,记得改主板设置!
一定要进入BIOS后,将主板的Security Boot 关掉!默认是打开的,否则无法安装NVIDIA驱动!
下面,开始安装N卡驱动:
如果不知道自己主机显卡的型号的话,直接在NVIDIA官网查询最新的显卡驱动版本号即可:
查询到版本号之后,开始安装驱动,运行以下命令,我的驱动版本号是390:
sudo add-apt-repository ppa:graphics-drivers
sudo apt-get update
sudo apt-cache search nvidia
sudo apt-get install nvidia-390
重启PC之后,运行
nvidia-smi
如果出现一张表格,则表示安装成功!
(btw, 安装驱动这个步骤坑很多,一定要先安装驱动,驱动安装成功之后,再进行下面的步骤!另外如果安装驱动之后出现无法进入图形界面的话,大概率是因为没有关掉security boot设置,如果有其他问题的话,可以留言,也可以自行百度)
下面开始安装CUDA9.0和cuDNNv7(注意!一定是CUDA9.0和cuDNNv7!这就是最新的版本了!2018-08-20,不能安装CUDA9.1,9.2等!)
官网下载两个包:(需要注册账户)
选择:Download cuDNN v7.2.1 (August 7, 2018), for CUDA 9.0 -> cuDNN v7.2.1 Runtime Library for Ubuntu16.04 (Deb)
进入对应路径后,运行:
sudo bash ~/Downloads/cuda_9.0.176_384.81_linux.run
经历超长的回车之后,分别输入:accept, n, y .........(特别注意!第二个一定要是拒绝安装显卡驱动!回答“n"!!之后就是一路y和默认回车了,Summary应该显示:
===========
= Summary =
===========
Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-9.0
Samples: Installed in /home/daviddl, but missing recommended libraries
有可能你还需要安装一下vim:
sudo apt-get install vim
编辑配置文件:
sudo vim ~/.bashrc
# 在文件最后加入下面三条路径
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-9.0/lib64
export PATH=$PATH:/usr/local/cuda-9.0/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-9.0
保存退出 ':x'
source ~/.bashrc
接下来安装cuDNNv7:
sudo dpkg -i libcudnn7_7.2.1.38-1+cuda9.0_amd64.deb
测试CUDA是否安装成功:
nvcc -V
ok! CUDA的安装,大概率完事儿了!
我比较喜欢使用Anaconda, 所以下面将Tensorflow 安装在Anaconda里:
安装Anaconda:
下载完成后,直接运行
sudo bash Anaconda3-5.2.0-Linux-x86_64.sh
一路yes, 一路默认回车即可,最后会询问是否安装VSCode, 我个人建议安装比较好,毕竟全宇宙最强编辑器,十分好用
安装完成Anaconda后,重启一下终端,即可运行:
conda --version
来查看是否安装成功,我现在安装最新版本是conda 4.5.4
接下来就到了安装Tensorflow的步骤,依次运行下面命令:
conda create -n tensorflow pip python=3.6
一路Y即可
使用下面命令来激活环境
source activate tensorflow
运行下面命令更新pip:
pip install --upgrade pip
再运行下面命令安装GPU版本的Tensorflow:
(tensorflow)$ pip install --ignore-installed --upgrade https://download.tensorflow.google.cn/linux/gpu/tensorflow_gpu-1.8.0-cp36-cp36m-linux_x86_64.whl
完事儿了,按道理来讲,完事儿了
可以运行python, 输入import tensorflow as tf 来试探一下是否成功,希望大家完美搞定,有问题可以留言哈,如果我不知道的话,我就胡乱回答。