UNet 是一种经典的卷积神经网络(Convolutional Neural Network, CNN)架构,专为生物医学图像分割任务设计。该模型于 2015 年由 Olaf Ronneberger 等人在论文《U-Net: Convolutional Networks for Biomedical Image Segmentation》中首次提出,因其卓越的性能和简单的结构,迅速成为图像分割领域的重要模型
1. 环境搭建
1.1 安装 Python 和相关工具
-
安装 Python 3.8 及以上版本
如果尚未安装 Python,可以从 Python官网 下载并安装。确保安装时勾选“Add Python to PATH”选项。 -
安装虚拟环境管理工具
虚拟环境是管理 Python 项目依赖的好方法。可以使用venv
或conda
来创建虚拟环境。我们这里使用venv
,步骤如下:# 创建虚拟环境 python -m venv unet_env # 激活虚拟环境 source unet_env/bin/activate # Linux/Mac unet_env\Scripts\activate # Windows
1.2 安装依赖库
-
安装 PyTorch
根据你的硬件选择正确的 PyTorch 版本。如果你的电脑支持 CUDA(GPU 加速),可以使用带 CUDA 的版本,否则使用 CPU 版本:# 安装支持 CUDA 11.8 版本的 PyTorch pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # 如果不支持 CUDA,则使用以下命令: pip install torch torchvision torchaudio
-
安装其他依赖
你还需要一些其他的辅助库:pip install numpy opencv-python matplotlib tqdm scikit-learn pillow
2. 下载或实现 UNet 模型
2.1 UNet 模型结构详解
UNet 是经典的图像分割网络,其主要特点是由编码器(下采样部分)和解码器(上采样部分)组成。通过跳跃连接,编码器的每一层都将特征图传递到解码器对应层,以保持细节信息。
以下是 UNet 的详细实现,包含编码器、解码器、跳跃连接以及卷积操作:
import torch
import torch.nn as nn
import torch.nn.functional as F
class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(UNet, self).__init__()
# 编码器部分
self.encoder1 = self.conv_block(in_channels, 64)
self.encoder2 = self.conv_block(64, 128)
self.encoder3 = self.conv_block(128, 256)
self.encoder4 = self.conv_block(256, 512)
# 底部瓶颈部分
self.bottleneck = self.conv_block(512, 1024)
# 解码器部分
self.upconv4 = self.upconv(1024, 512)
self.decoder4 = self.conv_block(1024, 512)
self.upconv3 = self.upconv(512, 256)
self.decoder3 = self.conv_block(512, 256)
self.upconv2 = self.upconv(256, 128)
self.decoder2 = self.conv_block(256, 128)
self.upconv1 = self.upconv(128,