【深度学习】 UNet详解

UNet 是一种经典的卷积神经网络(Convolutional Neural Network, CNN)架构,专为生物医学图像分割任务设计。该模型于 2015 年由 Olaf Ronneberger 等人在论文《U-Net: Convolutional Networks for Biomedical Image Segmentation》中首次提出,因其卓越的性能和简单的结构,迅速成为图像分割领域的重要模型


1. 环境搭建

1.1 安装 Python 和相关工具

  1. 安装 Python 3.8 及以上版本
    如果尚未安装 Python,可以从 Python官网 下载并安装。确保安装时勾选“Add Python to PATH”选项。

  2. 安装虚拟环境管理工具
    虚拟环境是管理 Python 项目依赖的好方法。可以使用 venvconda 来创建虚拟环境。我们这里使用 venv,步骤如下:

    # 创建虚拟环境
    python -m venv unet_env
    
    # 激活虚拟环境
    source unet_env/bin/activate  # Linux/Mac
    unet_env\Scripts\activate     # Windows
    

1.2 安装依赖库

  1. 安装 PyTorch
    根据你的硬件选择正确的 PyTorch 版本。如果你的电脑支持 CUDA(GPU 加速),可以使用带 CUDA 的版本,否则使用 CPU 版本:

    # 安装支持 CUDA 11.8 版本的 PyTorch
    pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
    
    # 如果不支持 CUDA,则使用以下命令:
    pip install torch torchvision torchaudio
    
  2. 安装其他依赖
    你还需要一些其他的辅助库:

    pip install numpy opencv-python matplotlib tqdm scikit-learn pillow
    

2. 下载或实现 UNet 模型

2.1 UNet 模型结构详解

UNet 是经典的图像分割网络,其主要特点是由编码器(下采样部分)和解码器(上采样部分)组成。通过跳跃连接,编码器的每一层都将特征图传递到解码器对应层,以保持细节信息。

以下是 UNet 的详细实现,包含编码器、解码器、跳跃连接以及卷积操作:

import torch
import torch.nn as nn
import torch.nn.functional as F

class UNet(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UNet, self).__init__()
        
        # 编码器部分
        self.encoder1 = self.conv_block(in_channels, 64)
        self.encoder2 = self.conv_block(64, 128)
        self.encoder3 = self.conv_block(128, 256)
        self.encoder4 = self.conv_block(256, 512)
        
        # 底部瓶颈部分
        self.bottleneck = self.conv_block(512, 1024)
        
        # 解码器部分
        self.upconv4 = self.upconv(1024, 512)
        self.decoder4 = self.conv_block(1024, 512)
        
        self.upconv3 = self.upconv(512, 256)
        self.decoder3 = self.conv_block(512, 256)
        
        self.upconv2 = self.upconv(256, 128)
        self.decoder2 = self.conv_block(256, 128)
        
        self.upconv1 = self.upconv(128,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值