Pytorch 模型参数管理

本文介绍了Pytorch中模型参数的管理,包括如何初始化参数、访问参数以及实现参数共享。模型初始化时需指定权重,可使用nn.Module子类定义网络,并通过nn.init函数进行初始化。参数访问可通过model.parameters()或直接通过层的属性获取。对于参数共享,示例展示了如何在不同层之间设置相同的参数,使得修改其中一个层的参数,另一个层的参数也会相应改变,且在反向传播时共享梯度。
摘要由CSDN通过智能技术生成

Pytorch 模型参数管理

1. 参数初始化

  • 使用 self.modules ,声明网络时初始化并加载权重

pytorch 模型应是 nn.Module 的子类
self.modules: nn.Module 类中的一个方法, 返回该网络中的所有 modules
可以利用 self.modules 来对网络进行初始化。

class Network(nn.Module):
	def __init__(self):
		supe().__init__()
		self.Conv2d = nn.Conv2d(3, 10)
		sefl.bn = nn.BatchNorm2d(10)
		self.relu = nn.ReLU()
		self._init_weight()  #在初始化网络时, 会执行该函数,然后初始化网络中的每个module
		
	def forward(self, x):
		x = self.Conv2d(x)
		x = self.bn(x)
		return self.relu(x)
		
	def _init_weight(self):
		for m in self.modules()   #继承nn.Module的方法
			if isinstance(m, nn.Conv2d):
				torch.nn.init.kaiming_normal_(m.weight)
			elif isinstance(m, nn.BatchNorm2d):
				m.weight.data.fill_(1)
				m.bias.data.zero_()
  • 先定义网络,后加载权重, 使用net.apply()
import torch.nn a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值