算法与数据结构(二十三)动态规划设计:最长递增子序列

注:此文只在个人总结 labuladong 动态规划框架,仅限于学习交流,版权归原作者所有;

也许有读者看了前文 动态规划详解,学会了动态规划的套路:找到了问题的「状态」,明确了 dp 数组/函数的含义,定义了 base case;但是不知道如何确定「选择」,也就是找不到状态转移的关系,依然写不出动态规划解法,怎么办?

不要担心,动态规划的难点本来就在于寻找正确的状态转移方程,本文就借助经典的「最长递增子序列问题」来讲一讲设计动态规划的通用技巧:数学归纳思想

最长递增子序列(Longest Increasing Subsequence,简写 LIS)是非常经典的一个算法问题,比较容易想到的是动态规划解法,时间复杂度 O(N^2),我们借这个问题来由浅入深讲解如何找状态转移方程,如何写出动态规划解法。比较难想到的是利用二分查找,时间复杂度是 O(NlogN),我们通过一种简单的纸牌游戏来辅助理解这种巧妙的解法。

力扣第 300 题「最长递增子序列open in new window」就是这个问题:

输入一个无序的整数数组,请你找到其中最长的严格递增子序列的长度,函数签名如下:

int lengthOfLIS(int[] nums);

比如说输入 nums=[10,9,2,5,3,7,101,18],其中最长的递增子序列是 [2,3,7,101],所以算法的输出应该是 4。

注意「子序列」和「子串」这两个名词的区别,子串一定是连续的,而子序列不一定是连续的。下面先来设计动态规划算法解决这个问题。

一、动态规划解法

动态规划的核心设计思想是数学归纳法。

相信大家对数学归纳法都不陌生,高中就学过,而且思路很简单。比如我们想证明一个数学结论,那么我们先假设这个结论在 k < n 时成立,然后根据这个假设,想办法推导证明出 k = n 的时候此结论也成立。如果能够证明出来,那么就说明这个结论对于 k 等于任何数都成立。

类似的,我们设计动态规划算法,不是需要一个 dp 数组吗?我们可以假设 dp[0...i-1] 都已经被算出来了,然后问自己:怎么通过这些结果算出 dp[i]

直接拿最长递增子序列这个问题举例你就明白了。不过,首先要定义清楚 dp 数组的含义,即 dp[i] 的值到底代表着什么?

我们的定义是这样的:dp[i] 表示以 nums[i] 这个数结尾的最长递增子序列的长度

Info
为什么这样定义呢?这是解决子序列问题的一个套路,后文 动态规划之子序列问题解题模板 总结了几种常见套路。你读完本章所有的动态规划问题,就会发现 dp 数组的定义方法也就那几种。

根据这个定义,我们就可以推出 base case:dp[i] 初始值为 1,因为以 nums[i] 结尾的最长递增子序列起码要包含它自己。

举两个例子:
在这里插入图片描述

这个 GIF 展示了算法演进的过程:

在这里插入图片描述

根据这个定义,我们的最终结果(子序列的最大长度)应该是 dp 数组中的最大值。

int res = 0;
for (int i = 0; i < dp.length; i++) {
    res = Math.max(res, dp[i]);
}
return res;

读者也许会问,刚才的算法演进过程中每个 dp[i] 的结果是我们肉眼看出来的,我们应该怎么设计算法逻辑来正确计算每个 dp[i] 呢?

这就是动态规划的重头戏,如何设计算法逻辑进行状态转移,才能正确运行呢?这里需要使用数学归纳的思想:

假设我们已经知道了 dp[0..4] 的所有结果,我们如何通过这些已知结果推出 dp[5]

在这里插入图片描述

根据刚才我们对 dp 数组的定义,现在想求 dp[5] 的值,也就是想求以 nums[5] 为结尾的最长递增子序列。

nums[5] = 3,既然是递增子序列,我们只要找到前面那些结尾比 3 小的子序列,然后把 3 接到这些子序列末尾,就可以形成一个新的递增子序列,而且这个新的子序列长度加一

nums[5] 前面有哪些元素小于 nums[5]?这个好算,用 for 循环比较一波就能把这些元素找出来。

以这些元素为结尾的最长递增子序列的长度是多少?回顾一下我们对 dp 数组的定义,它记录的正是以每个元素为末尾的最长递增子序列的长度。

以我们举的例子来说,nums[0]nums[4] 都是小于 nums[5] 的,然后对比 dp[0]dp[4] 的值,我们让 nums[5] 和更长的递增子序列结合,得出 dp[5] = 3

在这里插入图片描述

for (int j = 0; j < i; j++) {
    if (nums[i] > nums[j]) {
        dp[i] = Math.max(dp[i], dp[j] + 1);
    }
}

i = 5 时,这段代码的逻辑就可以算出 dp[5]。其实到这里,这道算法题我们就基本做完了。

读者也许会问,我们刚才只是算了 dp[5] 呀,dp[4], dp[3] 这些怎么算呢?类似数学归纳法,你已经可以算出 dp[5] 了,其他的就都可以算出来:

for (int i = 0; i < nums.length; i++) {
    for (int j = 0; j < i; j++) {
        // 寻找 nums[0..j-1] 中比 nums[i] 小的元素
        if (nums[i] > nums[j]) {
            // 把 nums[i] 接在后面,即可形成长度为 dp[j] + 1,
            // 且以 nums[i] 为结尾的递增子序列
            dp[i] = Math.max(dp[i], dp[j] + 1);
        }
    }
}

结合我们刚才说的 base case,下面我们看一下完整代码:

int lengthOfLIS(int[] nums) {
    // 定义:dp[i] 表示以 nums[i] 这个数结尾的最长递增子序列的长度
    int[] dp = new int[nums.length];
    // base case:dp 数组全都初始化为 1
    Arrays.fill(dp, 1);
    for (int i = 0; i < nums.length; i++) {
        for (int j = 0; j < i; j++) {
            if (nums[i] > nums[j]) 
                dp[i] = Math.max(dp[i], dp[j] + 1);
        }
    }
    
    int res = 0;
    for (int i = 0; i < dp.length; i++) {
        res = Math.max(res, dp[i]);
    }
    return res;
}

至此,这道题就解决了,时间复杂度 O(N^2)。总结一下如何找到动态规划的状态转移关系:

1、明确 dp 数组的定义。这一步对于任何动态规划问题都很重要,如果不得当或者不够清晰,会阻碍之后的步骤。

2、根据 dp 数组的定义,运用数学归纳法的思想,假设 dp[0...i-1] 都已知,想办法求出 dp[i],一旦这一步完成,整个题目基本就解决了。

但如果无法完成这一步,很可能就是 dp 数组的定义不够恰当,需要重新定义 dp 数组的含义;或者可能是 dp 数组存储的信息还不够,不足以推出下一步的答案,需要把 dp 数组扩大成二维数组甚至三维数组。

目前的解法是标准的动态规划,但对最长递增子序列问题来说,这个解法不是最优的,可能无法通过所有测试用例了,下面讲讲更高效的解法。

注:核心问题是 2 个:

  1. dp 数组的定义:最好能直接对应问题,如最长递增子序列中 dp 数组表示以 nums[i] 结尾的最长的递增最序列;
  2. dp 数组的推理:即知道 dp[0...i-1] 都已知,如何求出 dp[i]

其中 dp 数组如何定义很重要!

二、拓展到二维

我们看一个经常出现在生活中的有趣问题,力扣第 354 题「俄罗斯套娃信封问题open in new window」,先看下题目:

在这里插入图片描述

这道题目其实是最长递增子序列的一个变种,因为每次合法的嵌套是大的套小的,相当于在二维平面中找一个最长递增的子序列,其长度就是最多能嵌套的信封个数

前面说的标准 LIS 算法只能在一维数组中寻找最长子序列,而我们的信封是由 (w, h) 这样的二维数对形式表示的,如何把 LIS 算法运用过来呢?

在这里插入图片描述

读者也许会想,通过 w × h 计算面积,然后对面积进行标准的 LIS 算法。但是稍加思考就会发现这样不行,比如 1 × 10 大于 3 × 3,但是显然这样的两个信封是无法互相嵌套的。

这道题的解法比较巧妙:

先对宽度 w 进行升序排序,如果遇到 w 相同的情况,则按照高度 h 降序排序;之后把所有的 h 作为一个数组,在这个数组上计算 LIS 的长度就是答案

画个图理解一下,先对这些数对进行排序:

在这里插入图片描述

然后在 h 上寻找最长递增子序列,这个子序列就是最优的嵌套方案:

在这里插入图片描述

那么为什么这样就可以找到可以互相嵌套的信封序列呢?稍微思考一下就明白了:

首先,对宽度 w 从小到大排序,确保了 w 这个维度可以互相嵌套,所以我们只需要专注高度 h 这个维度能够互相嵌套即可。

其次,两个 w 相同的信封不能相互包含,所以对于宽度 w 相同的信封,对高度 h 进行降序排序,保证二维 LIS 中不存在多个 w 相同的信封(因为题目说了长宽相同也无法嵌套)。

下面看解法代码:

// envelopes = [[w, h], [w, h]...]
public int maxEnvelopes(int[][] envelopes) {
    int n = envelopes.length;
    // 按宽度升序排列,如果宽度一样,则按高度降序排列
    Arrays.sort(envelopes, new Comparator<int[]>() 
    {
        public int compare(int[] a, int[] b) {
            return a[0] == b[0] ? 
                b[1] - a[1] : a[0] - b[0];
        }
    });
    // 对高度数组寻找 LIS
    int[] height = new int[n];
    for (int i = 0; i < n; i++)
        height[i] = envelopes[i][1];

    return lengthOfLIS(height);
}

int lengthOfLIS(int[] nums) {
    // 见前文
}

为了清晰,我将代码分为了两个函数, 你也可以合并,这样可以节省下 height 数组的空间。

此处放上 Leetcode 官方答案,个人觉着解释的更清晰一些:

根据题目的要求, 如果我们选择了 k k k 个信封, 它们的的宽度依次为 w 0 , w 1 , ⋯   , w k − 1 w_0, w_1, \cdots, w_{k-1} w0,w1,,wk1, 高度依次为
h 0 , h 1 , ⋯   , h k − 1 h_0, h_1, \cdots, h_{k-1} h0,h1,,hk1, 那么需要满足: { w 0 < w 1 < ⋯ < w k − 1 h 0 < h 1 < ⋯ < h k − 1 \left\{\begin{array}{l} w_0<w_1<\cdots<w_{k-1} \\ h_0<h_1<\cdots<h_{k-1} \end{array}\right. {w0<w1<<wk1h0<h1<<hk1
同时控制 w w w h h h 两个维度并不是那么容易, 因此我们考虑固定一个维度, 再在另一个维度上进行选 择。例如, 我们固定 w w w
维度, 那么我们将数组 envelopes 中的所有信封按照 w w w 升序排序。这样一 来,
我们只要按照信封在数组中的出现顺序依次进行选取, 就一定保证满足: w 0 ≤ w 1 ≤ ⋯ ≤ w k − 1 w_0 \leq w_1 \leq \cdots \leq w_{k-1} w0w1wk1 了。然而小于等于 ≤ \leq 和小于 < < < 还是有区别的,但我们不妨首先考虑一个简化版本的问题:
如果我们保证所有信封的 w 值互不相同, 那么我们可以设计出一种得到答案的方法吗? 在 w w w 值互不相同的前提下,小于等于 ≤ \leq
和小于 < < < 是等价的,那么我们在排序后,就可以完全忽略 w w w 维度, 只需要考虑 h h h 维度了。此时, 我们需要解决的问题即为:
给定一个序列, 我们需要找到一个最长的子序列, 使得这个子序列中的元素严格单调递增, 即上面 要求的:
h 0 < h 1 < ⋯ < h k − 1 > h_0<h_1<\cdots<h_{k-1}> h0<h1<<hk1> 那么这个问题就是经典的「最长严格递增子序列」问题了, 读者可以参考力扣平台的 300 . 最长递增 子序列 及其 官方题解。最长严格递增子序列的详细解决方法属于解决本题的前置知识点, 不是本文分析的重点, 因此这里不再赘述,会在方法一和方法二中简单提及。 当我们解决了简化版本的问题之后, 我们来想一想使用上面的方法解决原问题, 会产生什么错误。当 w w w
值相同时,如果我们不规定 h h h 值的排序顺序,那么可能会有如下的情况: 排完序的结果为 [ ( w , h ) ] = [ ( 1 , 1 ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 4 ) ] [(w,h)]=[(1,1),(1,2),(1,3),(1,4)] [(w,h)]=[(1,1),(1,2),(1,3),(1,4)], 由于这些信封的 w w w 值都相同, 不存在一个 信封可以装下另一个信封, 那么我们只能在其中选择 1 个信封。然而如果我们完全忽略 w w w 维度, 剩下的 h h h 维度为 [ 1 , 2 , 3 , 4 ] [1,2,3,4] [1,2,3,4],
这是一个严格递增的序列, 那么我们就可以选择所有的 4 个信封了, 这就产生了错误。 因此,我们必须要保证对于每一种 w w w 值,我们最多只能选择 1 个信封。 我们可以将 h h h 值作为排序的第二关键字进行降序排序, 这样一来, 对于每一种 w w w 值, 其对应的信封 在排序后的数组中是按照 h h h 值递减的顺序出现的, 那么这些 h h h 值不可能组成长度超过 1 的严格递增的序列,这就从根本上杜绝了错误的出现。 因此我们就可以得到解决本题需要的方法:

  • 首先我们将所有的信封按照 w w w 值第一关键字升序、 h h h 值第二关键字降序进行排序;
  • 随后我们就可以忽略 w w w 维度, 求出 h h h 维度的最长严格递增子序列, 其长度即为答案。 下面简单提及两种计算最长严格递增子序列的方法, 更详细的请参考上文提到的题目以及对应的官方 题解。

最后赋上个人题解:

    def maxEnvelopes(self, envelopes):
        """
        :type envelopes: List[List[int]]
        :rtype: int
        """
        envelopes.sort(key = lambda x: (x[0], -x[1]))
        # heigth = [1] * len(envelopes)
        # for i in range(len(envelopes)):
        #     heigth[i] = envelopes[i][1]
        # return self.lcs(heigth)
        return self.lcsPro(envelopes)
    
    def lcs(self, heigth):
        if len(heigth) <= 1:
            return 1
        dp = [1] * len(heigth)
        for i in range(len(heigth)):
            for j in range(i):
                if heigth[i] > heigth[j]:
                    dp[i] = max(dp[i], dp[j] + 1)
        return max(dp)


    def lcsPro(self, envelopes):
        if len(envelopes) <= 1:
            return 1
        dp = [1] * len(envelopes)
        for i in range(len(envelopes)):
            for j in range(i):
                if envelopes[i][1] > envelopes[j][1]:
                    dp[i] = max(dp[i], dp[j] + 1)
        return max(dp) ```

三、参考文献

[1] 动态规划设计:最长递增子序列
[2] Leetcode 官方题解

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值