第六章 特殊的图 6.1 二部图

6.1 二部图

本节大多都是概念的引入,我就用我自己的话去记录了。

  • 二部图(偶图):我们将图里的点分为两个集合 V 1 V_1 V1, V 2 V_2 V2后,每一条边的端点分别属于 V 1 V_1 V1, V 2 V_2 V2。我们将二部图记做 G G G = < V 1 V_1 V1, V 2 V_2 V2, E E E>。其中 V 1 V_1 V1, V 2 V_2 V2称为互补顶点子集。
  • 当二部图中 V 1 V_1 V1的每一个顶点到 V 2 V_2 V2的每一个顶点均有且仅有一条边相关联,则称其为完全二部图(完全二部图)。当 ∣ V 1 ∣ = n |V_1| = n V1=n, ∣ V 2 ∣ = m |V_2| = m V2=m 时,完全二部图记做 K n , m K_{n,m} Kn,m

判断一个图是否为二部图的方法:
当且仅当图中没有长度为奇数的回路。

eg:
在这里插入图片描述
是二部图但不是完全二部图。因为上面的一个点没有与下面的每一个点关联。

  • 判断是不是二部图的时候我们把注意力放在上。
  • 判断是不是完全二部图的时候我们把注意力放在上。

在这里插入图片描述
这两个图是同构的,是二部图也是完全二部图。

在这里插入图片描述
这个图不是二部图。图里有一个三角形,所以存在长度为3(奇数)的回路。故不是二部图。


  • 在所有边中取子集 M M M,若边集 M M M中的边两两不相邻,则边集 M M M为图的匹配
  • 若再往 M M M里添一条边就不是匹配了,那么 M M M是图的极大匹配
  • M M M中边数最多的匹配称为最大匹配
  • 最大匹配中边的条数称为匹配数
  • M M M中的边与点 v i v_i vi关联,则 v i v_i vi M M M饱和点,否则称为非饱和点。
  • 若图中每一个点都是饱和点,则称 M M M完美匹配。(简单来说就是 M M M中的边包含了所有点就是完美匹配)(再简单说就是如果 匹配数 X 2 = 图中点数,那么是完美匹配)

eg:
在这里插入图片描述
匹配:{ e 1 e_1 e1},{ e 1 e_1 e1, e 7 e_7 e7} 等等
极大匹配:{ e 5 e_5 e5},{ e 1 e_1 e1, e 7 e_7 e7},{ e 2 e_2 e2, e 6 e_6 e6},{ e 3 e_3 e3, e 7 e_7 e7},{ e 4 e_4 e4, e 6 e_6 e6}
最大匹配:{ e 1 e_1 e1, e 7 e_7 e7},{ e 2 e_2 e2, e 6 e_6 e6},{ e 3 e_3 e3, e 7 e_7 e7},{ e 4 e_4 e4, e 6 e_6 e6}
匹配数:2
无完美匹配:因为 M M M中的点必为偶数个,而此图中的点为奇数个。

在这里插入图片描述
匹配:{ e 1 e_1 e1},{ e 7 e_7 e7} 等等
极大匹配:{ e 2 e_2 e2, e 5 e_5 e5},{ e 3 e_3 e3, e 6 e_6 e6},{ e 1 e_1 e1, e 7 e_7 e7, e 4 e_4 e4},{ e 2 e_2 e2, e 6 e_6 e6, e 4 e_4 e4}
最大匹配:{ e 1 e_1 e1, e 7 e_7 e7, e 4 e_4 e4},{ e 2 e_2 e2, e 6 e_6 e6, e 4 e_4 e4}
匹配数:3
3 x 2 = 6 == 6,所以是完美匹配


在二部图 G G G = < V 1 V_1 V1 , V 2 V_2 V2 , E E E > 中 , ∣ V 1 ∣ |V_1| V1 ≤ \leq ∣ V 2 ∣ |V_2| V2 M M M G G G 中一个最大匹配,若 ∣ M ∣ |M| M = ∣ V 1 ∣ |V_1| V1 ,则称 M M M G G G V 1 V_1 V1 V 2 V_2 V2的完备匹配。当 ∣ V 1 ∣ |V_1| V1 = ∣ V 2 ∣ |V_2| V2时,完备匹配是完美匹配。

eg1:
在这里插入图片描述
如图:
{ e 1 e_1 e1, e 2 e_2 e2}为最大匹配,无完备匹配,更无完美匹配。

eg2:
在这里插入图片描述

{ e 1 e_1 e1, e 2 e_2 e2, e 3 e_3 e3}是此图的最大匹配,其是完备匹配,但是不是完美匹配。

eg3:
在这里插入图片描述

{ e 1 e_1 e1, e 2 e_2 e2, e 3 e_3 e3}是此图的最大匹配,其是完备匹配也是完美匹配。

Hall 定理:设二部图 G G G = < V 1 V_1 V1 , V 2 V_2 V2 , E E E > 中 , ∣ V 1 ∣ |V_1| V1 ≤ \leq ∣ V 2 ∣ |V_2| V2 G G G 中存在从 V 1 V_1 V1 V 2 V_2 V2的完备匹配当且仅当 V 1 V_1 V1 中任意 k 个顶点至少邻接 V 2 V_2 V2 中的 k 个顶点。

证明的时候有用,先在这里记一下。

练习:
在这里插入图片描述
解析:
有 m+n行,mn列。

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值