1.2命题公式及其分类
基础定义:
- 命题常元:代表特定简单命题
- 命题变元:代表任意命题,取值为1或0的变量(注意命题变元不是命题)
二者定义可类比我们常数,与未知数。
命题公式的定义:
- 每一个命题常元或命题变元都是命题公式
- 若A是命题公式,则(¬A)是命题公式
- 若A和B都是命题公式,则(A∧B),(A∨B),(A→B),(A↔B)都是命题公式
- 一个由命题常元或命题变元,联结词和括号所组成的符号串是命题公式,当且仅当这个符号串是有限次应用上面的步骤得到的。
不难理解,一个含有命题变元的命题公式的真值是不确定的(就像X+1的值我们不知道)。只有当公式中的所有命题变元被指定成特定命题时,命题公式才成为命题。
对命题公式A内所有命题变元赋值后,使A的真值为真的赋值称为成真赋值,使A的真值为假的赋值称为成假赋值
若命题公式中有n个变项,则命题公式有 2 n 2^n 2n个赋值。(因为每个变量都有且只有0,1两种状态)
可用画真值表的方法判断命题公式的真值,例如:
- (¬p∧q)→q
- ¬(p→ q)↔ ¬(p ∧ ¬q)
- (p→q)∧ ¬r
- 若一个命题公式A像情况1一样,在它的各种赋值下取值为真,则称A为永真式或重言式
- 若一个命题公式A像情况2一样,在它的各种赋值下取值为假,则称A为永假式或矛盾式
- 若一个命题公式A像情况3一样,至少有一种赋值使A的真值为真,则称A为可满足式
所有,易得:
- 公式A不是可满足式,则一定是永假式
- 公式A不是永假式,则一定是可满足式
- 公式A是永真式,则¬A一定是永假式
练习:
1.设p:2是素数 ,q:3是素数 ,r: 2 \sqrt 2 2 是有理数,下列命题公式中哪个是假命题?
- (p∨q)→ r ✔
- r → ( p∨q )
- ( p∧q ) → p
- ( r∨q ) ↔ p
2.命题公式 (¬p → q)→ ( ¬q ∨ p )中,成真赋值的个数为?
- 0
- 1
- 2
- 3 ✔
3.下列命题公式不是永真式的是?
- (p → q)→ p ✔
- p → ( q → p )
- ¬p ∨ ( q → p )
- (p → q ) ∨ p
4.下列式子为矛盾式的是 ?
- p ∨ ( p ∧ q )
- p ∨ ¬p
- p ∧ ¬p ✔
- ¬( p∨ q ) → ¬p ∧ ¬q