第一章 命题逻辑 1.2命题公式及其分类

1.2命题公式及其分类

基础定义:

  • 命题常元:代表特定简单命题
  • 命题变元:代表任意命题,取值为1或0的变量(注意命题变元不是命题)

二者定义可类比我们常数,与未知数。

命题公式的定义:

  1. 每一个命题常元或命题变元都是命题公式
  2. 若A是命题公式,则(¬A)是命题公式
  3. 若A和B都是命题公式,则(A∧B),(A∨B),(A→B),(A↔B)都是命题公式
  4. 一个由命题常元或命题变元,联结词和括号所组成的符号串是命题公式,当且仅当这个符号串是有限次应用上面的步骤得到的。

不难理解,一个含有命题变元的命题公式的真值是不确定的(就像X+1的值我们不知道)。只有当公式中的所有命题变元被指定成特定命题时,命题公式才成为命题。

对命题公式A内所有命题变元赋值后,使A的真值为真的赋值称为成真赋值,使A的真值为假的赋值称为成假赋值

若命题公式中有n个变项,则命题公式有 2 n 2^n 2n个赋值。(因为每个变量都有且只有0,1两种状态)

可用画真值表的方法判断命题公式的真值,例如:

  1. (¬p∧q)→q

真值表

  1. ¬(p→ q)↔ ¬(p ∧ ¬q)

真值表

  1. (p→q)∧ ¬r

真值表

  • 若一个命题公式A像情况1一样,在它的各种赋值下取值为真,则称A为永真式重言式
  • 若一个命题公式A像情况2一样,在它的各种赋值下取值为假,则称A为永假式矛盾式
  • 若一个命题公式A像情况3一样,至少有一种赋值使A的真值为真,则称A为可满足式

所有,易得:

  1. 公式A不是可满足式,则一定是永假式
  2. 公式A不是永假式,则一定是可满足式
  3. 公式A是永真式,则¬A一定是永假式

练习:

1.设p:2是素数 ,q:3是素数 ,r: 2 \sqrt 2 2 是有理数,下列命题公式中哪个是假命题?

  • (p∨q)→ r ✔
  • r → ( p∨q )
  • ( p∧q ) → p
  • ( r∨q ) ↔ p

2.命题公式 (¬p → q)→ ( ¬q ∨ p )中,成真赋值的个数为?

  • 0
  • 1
  • 2
  • 3 ✔

3.下列命题公式不是永真式的是?

  • (p → q)→ p ✔
  • p → ( q → p )
  • ¬p ∨ ( q → p )
  • (p → q ) ∨ p

4.下列式子为矛盾式的是 ?

  • p ∨ ( p ∧ q )
  • p ∨ ¬p
  • p ∧ ¬p ✔
  • ¬( p∨ q ) → ¬p ∧ ¬q
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值