§2.2命题公式
2.2.1公式
我们用大写的英文字母P,Q,R,⋯,等代表一个抽象的命题,或称为命题符号.
定义2.2.1.命题符号称为原子。
例如,Q,S,⋯等都是原子。
定义2.2.2.命题逻辑中的公式,是如下定义的一个符号串:(1)原子是公式;(2)0,1是公式;(3)若G,H是公式,则(¬G),(G∨H),(G∧H),(G→H),(G↔H)是公式;
所有公式都是有限次使用(1),(2),(3)得到的符号串。
为了省括号,有如下规定:1.公式(¬G)的括号可以省略,写成¬G。2.整个公式最外层的括号可以省略。3.五种逻辑联结词的优先级按如下次序递增:↔,→,∧,∨,¬
例如,我们写符号串:P∧Q∨R→Q∧¬S∨R就意味着是如下公式:((P∧(Q∨R))→(Q∧((¬S)∨R)))
2.2.2解释
由定义知,公式是由命题符号,逻辑联结词,括号组成的符号串,而命题符号是抽象的,所以,如果不对命题符号给以解释(即指定命题符号为真或假),则公式没有真值可言。反之,若对所有命题符号都给以解释,则公式就变成一个有真值的命题。
定义2.2.3.设G是命题公式,A 1 ,⋯,A n 是出现在G中的所有原子。指定A 1 ,⋯,A n 的一组真值,则这些真值称为G的一个解释。
设G是公式,I是G的一个解释,G在I下有真值,通常记为T I (G)。
例如,G=P∧Q,设解释I,I ′ 如下:
I:P1 Q1 I ′ :P1 Q0
则T I (G)=1,T I ′ (G)=0
定义2.2.4.公式G在其所有可能的解释下所取真值的表,称为G的真值表。
有n个不同原子的公式,共有2 n 个解释。
例如,G=(P∧Q)→R,其真值表如下:
G=(P∧Q)→R
P | Q | R | G |
---|---|---|---|
0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 |
若公式G中出现的所有原子为A 1 ,⋯,A n ,有时我们用{m 1 ,⋯,m n }表示G的一个解释I,其中
m i ={A i 当A i 在I下为1时,¬A i 当A i 在I下为0时, i=1,⋯,n
例如,上例公式G的真值表中第二个解释就可以记为{¬P,¬Q,R}。
定义2.2.5.公式G称为恒真的(或有效的),如果G在它的所有解释下都是真的;公式G称为恒假的(或不可满足的),如果G在它的所有解释下都是假的;公式G称为可满足的,如果它不是恒假的。
例如,P∨¬P是恒真公式,而P∧¬P是恒假公式,G=(P∧Q)→R则是可满足的公式。
G是恒真的当且仅当¬G是恒假的。
G是可满足的当且仅当至少有一个解释I,使G在I下为真。
若G是恒真的,则G是可满足的;反之不对。
如果公式G在解释I下是真的,则称I满足G;
如果G在解释I下是假的,则称I弄假G。
判定问题:能否给出一个可行方法,对任意公式,判定其是否恒真公式。
因为一个命题公式的解释数目是有穷的,所以命题逻辑的判定问题是可解的(可判定的,可计算的),亦即,命题公式的恒真,恒假性是可判定的。