离散数学 02.02 命题公式

§2.2 

2.2.1 

PQR,. 

2.2.1. 
QS 

2.2.2.:(1)(2)0,1(3)GH(¬G),(GH),(GH),(GH),(GH) 
使(1),(2),(3) 
1.(¬G)¬G2.3.:,,,,¬ 
:PQRQ¬SR((P(QR))(Q((¬S)R))) 

2.2.2 

由定义知,公式是由命题符号,逻辑联结词,括号组成的符号串,而命题符号是抽象的,所以,如果不对命题符号给以解释(即指定命题符号为真或假),则公式没有真值可言。反之,若对所有命题符号都给以解释,则公式就变成一个有真值的命题。

2.2.3.GA 1 ,,A n GA 1 ,,A n G 

GIGGIT I (G) 
G=PQ,II   
I:P1 Q1  I  :P1 Q0   
T I (G)=1,T I   (G)=0 

2.2.4.GG 
n2 n  
G=(PQ)R, 
G=(PQ)R 

PQRG
0001
0011
0101
0111
1001
1011
1100
1111

GA 1 ,,A n ,{m 1 ,,m n }GI 
m i ={A i A i I1¬A i A i I0 i=1,,n 

G{¬P,¬Q,R} 

2.2.5.G()GG()GG 
P¬PP¬PG=(PQ)R 

G¬G 
GI使GI 
GG 
GIIG 
GIIG 

 
() 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值