1485: 医院设置
时间限制: 1 Sec 内存限制: 128 MB提交: 17 解决: 6
[ 提交][ 状态][ 讨论版]
题目描述
设有一棵二叉树(如图3-8,其中圈中的数字表示结点中居民的人口,圈边上数字表示结点编号。现在要求在某个结点上建立一个医院,使所有居民所走的路程之和为最小,同时约定,相邻结点之间的距离为1。就本图而言,若医院建在1处,则距离和=4+12+2*20+2*40=136;若医院建在3处,则距离和=4*2+13+20+40=81……
输入
输入第一行一个整数n,表示树的结点数(n<=100)。接下来的n行每行描述了一个结点的状况,包含三个整数,整数之间用空格(一个或多个)分隔,其中:第一个数为居民人口数;第二个数为左链接,为0表示无链接;第三个数为右链接,为0表示无链接。
输出
输出一个整数,表示最小距离和。
样例输入
5
13 2 3
4 0 0
12 4 5
20 0 0
40 0 0
样例输出
81
提示
数据规模也不大,采用邻接矩阵存储,用Floyed法求出任意两结点之间的最短路径长,然后穷举医院可能建立的n个结点位置
#include<stdio.h>
#include<string.h>
#define maxn 0x3f3f3f3f//之前数据类型设置的小,提交就是错的
int num[110];//结点处的人口数
int map[110][110];//表示图
int lowcost[110];//lowcost[i]储存起始点到城市i的最小权值
int visit[110];//储存该顶点是否已经加入到集合S(已经确定最小路径的结点)中
void Dijkstra(int v,int n)
{
memset(lowcost,maxn,sizeof(lowcost));
memset(visit,0,sizeof(visit));
for(int i=1;i<=n;i++)
{
lowcost[i]=map[v][i];
visit[i]=0;
}
visit[v]=1;
for(int i=2;i<=n;i++)
{
int min=maxn;
int minn=0;
for(int j=1;j<=n;j++)
{
if(lowcost[j]<min&&visit[j]!=1)
{
min=lowcost[j];
minn=j;
}
}
visit[minn]=1;
for(int k=1;k<=n;k++)
{
if(map[minn][k]+min<lowcost[k])
lowcost[k]=map[minn][k]+min;
}
}
}
int main()
{
int n,P,a,b;
scanf("%d",&n);
memset(map,0,sizeof(map));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
map[i][j]=maxn;
for(int i=1;i<=n;i++)
{
scanf("%d %d %d",&P,&a,&b);
num[i]=P;
map[i][i]=0;
map[i][a]=1;
map[a][i]=1;
map[i][b]=1;
map[b][i]=1;
}
int min=maxn;
for(int m=1;m<=n;m++)
{
int sum=0;
Dijkstra(m,n);
for(int t=1;t<=n;t++)
{
sum+=(lowcost[t]*num[t]);
}
if(sum<min)
min=sum;
}
printf("%d\n",min);
return 0;
}
#include<string.h>
#define maxn 0x3f3f3f3f//之前数据类型设置的小,提交就是错的
int num[110];//结点处的人口数
int map[110][110];//表示图
int lowcost[110];//lowcost[i]储存起始点到城市i的最小权值
int visit[110];//储存该顶点是否已经加入到集合S(已经确定最小路径的结点)中
void Dijkstra(int v,int n)
{
memset(lowcost,maxn,sizeof(lowcost));
memset(visit,0,sizeof(visit));
for(int i=1;i<=n;i++)
{
lowcost[i]=map[v][i];
visit[i]=0;
}
visit[v]=1;
for(int i=2;i<=n;i++)
{
int min=maxn;
int minn=0;
for(int j=1;j<=n;j++)
{
if(lowcost[j]<min&&visit[j]!=1)
{
min=lowcost[j];
minn=j;
}
}
visit[minn]=1;
for(int k=1;k<=n;k++)
{
if(map[minn][k]+min<lowcost[k])
lowcost[k]=map[minn][k]+min;
}
}
}
int main()
{
int n,P,a,b;
scanf("%d",&n);
memset(map,0,sizeof(map));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
map[i][j]=maxn;
for(int i=1;i<=n;i++)
{
scanf("%d %d %d",&P,&a,&b);
num[i]=P;
map[i][i]=0;
map[i][a]=1;
map[a][i]=1;
map[i][b]=1;
map[b][i]=1;
}
int min=maxn;
for(int m=1;m<=n;m++)
{
int sum=0;
Dijkstra(m,n);
for(int t=1;t<=n;t++)
{
sum+=(lowcost[t]*num[t]);
}
if(sum<min)
min=sum;
}
printf("%d\n",min);
return 0;
}