1. 引用赋值
对于不可变对象,修改变量的值意味着在内存中要新创建一个数据对象。所以对于不可变对象,变量之间不会相互影响。对于可变对象,变量之间是相互影响的。
数值、字符串、元组是不可变对象,列表是可变对象。
可变对象和不可变对象的赋值形式虽然一样,但是修改数据时的过程不一样。
对于不可变对象,修改数据是直接在堆内存中新创建一个数据对象。如图:
对于可变对象,修改这个可变对象中的元素时,这个可变对象的地址不会改变,所以是"原处修改"的。但需要注意的是,这个被修改的元素可能是不可变对象,可能是可变对象,如果被修改的元素是不可变对象,就会创建一个新数据对象,并引用这个新数据对象,而原始的那个元素将等待垃圾回收器回收。
>>> L=[333,444,555]
>>> id(L),id(L[1])
(56583832, 55771984)
>>> L[1]=4444
>>> id(L),id(L[1])
(56583832, 55771952)
如图所示:
Note:早就存在的小整数
数值对象是不可变对象,理论上每个数值都会创建新对象。
但实际上并不总是如此,对于[-5,256]这个区间内的小整数,因为python内部引用过多,这些整数在python运行的时候就事先创建好并编译好对象了。所以,a=2, b=2, c=2根本不会在内存中新创建数据对象2,而是引用早已创建好的初始化数值2。
2. 深浅拷贝
浅拷贝:shallow copy,拷贝父对象,不会拷贝对象的内部的子对象。只拷贝第一层的数据。copy模块的copy()就是浅拷贝。
深拷贝:deep copy,完全拷贝了父对象及其子对象。递归拷贝所有层次的数据,python中copy模块的deepcopy()是深拷贝。
所谓第一层次,指的是出现嵌套的复杂数据结构时,那些引用指向的数据对象属于深一层次的数据。
一般来说,浅拷贝或按引用赋值就是我们所期待的操作。只有少数时候(比如数据序列化、要传输、要持久化等),才需要深拷贝操作,但这些操作一般都内置在对应的函数中,无需我们手动去深拷贝。