给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1
图2
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
#include <stdio.h>
#define MaxTree 10
#define ElementType char
#define Tree int
#define Null -1
struct TreeNode
{
ElementType Element;
Tree Left;
Tree Right;
} T1[MaxTree],T2[MaxTree];
Tree BuildTree( struct TreeNode T[]);
int Isomorphic(Tree R1, Tree R2);
int main(){
Tree R1=Null,R2=Null;
R1 = BuildTree(T1);
R2 = BuildTree(T2);
if( Isomorphic(R1,R2)) printf("Yes\n");
else printf("No\n");
return 0;
}
Tree BuildTree( struct TreeNode T[])
{
Tree Root = -1;
int N;
char cl,cr;
scanf("%d\n",&N);
if(N){
int check[N],i = -1;
for (i = 0; i < N; ++i)
{
check[i] = 0; //结点标识
}
for (i = 0; i < N; ++i)
{
scanf("%c %c %c\n",&T[i].Element, &cl, &cr);
if(cl != '-'){
T[i].Left = cl - '0';
check[T[i].Left] = 1;
}
else T[i].Left = Null;
if(cr != '-'){
T[i].Right = cr - '0';
check[T[i].Right] = 1;
}
else T[i].Right = Null;
}
for (i = 0; i < N; ++i)
{
if(!check[i]) break;
}
Root = i;
}
return Root;
}
int Isomorphic(Tree R1, Tree R2)
{
if((R1 == Null) && (R2 == Null)) return 1;
if( ((R1 != Null) && (R2 ==Null)) ||
((R1 == Null) && (R2 !=Null)) ) return 0;
if( T1[R1].Element != T2[R2].Element) return 0;
if( (T1[R1].Left == Null) && (T2[R2].Left == Null))
return Isomorphic( T1[R1].Right, T2[R2].Right);
if( ((T1[R1].Left!=Null) && (T2[R2].Left!=Null)) &&
(T1[T1[R1].Left].Element == T2[T2[R2].Left].Element))
return (Isomorphic(T1[R1].Left, T2[R2].Left) &&
Isomorphic(T1[R1].Right, T2[R2].Right));
else
return (Isomorphic(T1[R1].Left, T2[R2].Right) &&
Isomorphic(T1[R1].Right, T2[R2].Left));
}
1.数组的索引和元素
2.逻辑,考虑缜密