格系列笔记(一):About Lattice

格的定义

这是格的定义。与向量空间不一样的是,这组线性无关向量的系数都是整数,而组成向量空间的线性无关向量的系数可以取任意实数值。

 

The Fundamental Parallelepiped

The fundamental parallelepiped 被定义为这样一个区域

注意,系数的取值是左闭右开,t_i \in [0,1)

如下图:

其实,一个格的parallelepiped就是一个格的“基本区域”,我们把这个区域放在每一个格点上(用格点来平移这个区域),我们就可以用这个基本区域覆盖整个空间。寻找空间点的一个,实际上就是在做“模”parallelepiped的运算。

举例来说,一个点在格上,当且仅当这个点模P(B)后会得到0点,即原点。我们不关系点的绝对位置,只关心点的相对位置

以下定理便说明了parallelepiped的作用

基本思想是,把空间多有的点都对应到格的相同位置上——parallelepiped上。

行列式

格的行列式定义如下:

格的行列式,是格的parallelepiped的体积大小。

这大小等于多少呢?

以上定理是说,将格的基向量组成一个矩阵,parallelepiped的体积大小即为这个矩阵的行列式的值。所以有:

                                                       det(L) = vol(F)=|det(F) |

又有对于格的不同的基,他们构成的parallelepiped的体积是相等的。 

Minkowski's Theorem

我们先给出Blichfeld定理

Blichfeld's Theorem:

         For \ any \ lattice \ L \ and\ set\ S\ of\ volume >det(L)\ there\ exist\ z_1,z_2 \in S,z_1 \neq z_2 such\ that\ z_1-z_2\in L.

这个定理是说,选取一个集合,只要所取集合的体积大于行列式,这里面一定有两个点,它们的差值是一个格点。注意,集合体积不能等于行列式,因为基本区域中有且只有一个格点(回忆基本区域的定义)。这个定理已经证明了百分之九十的Minkowski定理。

下面给出Minkowski定理:

 

这个定理是说,在R^n中选取一个关于原点对称的凸集,如果它的体积大于格的基本区域的体积乘与2^n,那么S中一定包含一个非零的格点。  

有几个地方需注意:

1.S是一个关于原点对称的凸集

2."S contains a nonzero lattice vector". 既然S是关于原点对称,原点必然在S中。

我们可以继续的到一个Minkowski定理的推论:

这个推论告诉了我们,L的最短向量,最长不会超过\sqrt{n}det(L)^\frac{1}{n}.

格中难题

最短向量问题(SVP):

这个问题是说,给定一个格,要求找到格上的一个最短向量(离原点最近的点)。注意,格上的最短向量可能不止一个,问题只要求找到其中一个。

最近向量问题(CVP):

这个问题是说,给定一个格和一个定义在R^m向量空间中的点w(不是格点),要求找到格上的一个点vv是距离w最近的格点。

SVP和CVP都是NP-hard问题,我们又基于这两个问题定义出两个相对简单的问题。

渐进最短向量问题(apprSVP):

这个问题也是要求找到一个短向量,但不一定要是最短的,只需小于最短向量的一个倍数。基于不同的倍数,apprSVP的难度也不同。

渐进最近向量问题(apprCVP):

apprCVP与apprSVP类似,我们只需要找到一个近似的最近向量。

 

参考:

1.An Introduction to Mathematical Cryptography —— Second Edition by Jeffrey Hoffstein Jill Pipher Joseph H. Silverman

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值