解锁密码学的奥秘

密码学,简单来说,就是一种技术,帮助我们安全地传输信息,防止被图谋不轨者窃取和篡改。它就像一把锁,可以把你的秘密信息锁起来,只有拥有特定钥匙的人才能打开。而基于格的密码学和基于椭圆曲线的密码学,就是两种不同的锁。

本文将来探究一下这两种锁,也就是这两种密码学的基本原理。

太长不看版 tl,dr

  1. 基于格的密码学和基于椭圆曲线的密码学本质上都是利用超级数学难题进行加密的方式。
  2. 基于格的密码学更难一点,量子计算机也几乎解决不了,安全性上略胜一筹,但基于椭圆曲线的密码学密钥短,计算速度更快。
  3. Linea 采用了基于格的密码学,具有后量子安全性。

基于格的密码学

想象一下,格子其实就是一个满是点的空间,每个点都是有规律的。基于格的密码学,就是使用这些点之间的关系作为难题,构建出一个加密算法。

格子上存在一些困难的问题,如最短向量问题(SVP)、最近向量问题等,这些问题被认为是在量子计算机上也很难解决的。因此,基于格的密码学可以抵抗量子攻击,具有后量子安全性。

这种加密方式还有很多优点,比如它的算法效率很高,结构简单,而且可以根据需要灵活选择参数。但它也有一些挑战,比如加密的密钥和结果会比较长,证明其安全性也较为复杂,而且对某些错误比较敏感。

基于格的密码学现在已经在很多地方发挥作用了,像是全同态加密、属性加密和零知识证明等。

基于椭圆曲线的密码学

当我们说到椭圆曲线,它实际上是满足特定方程的点组成的曲线。基于椭圆曲线的密码学是一种利用椭圆曲线上的数学难题来构造加密算法的方法。

椭圆曲线上的难题包括离散对数问题(DLP)、椭圆曲线因子分解问题(ECFP)和椭圆曲线同态加密问题(ECCP)等,这些问题被认为是在经典计算机上很难解决的。

这种加密方式的好处是它的密钥短,计算速度快。但也面临一些挑战,如对椭圆曲线参数选择和验证较为复杂、对侧信道攻击较为脆弱、对量子攻击缺乏抵抗力等。

基于椭圆曲线的密码学在实际应用中得到了广泛的应用,如数字签名、密钥交换和椭圆曲线加密。

简单来说,两种密码体系就像两种不同的锁:一个是基于错综复杂的方格模型构建的,而另一个是基于优雅的椭圆曲线形状设计的。这两种锁都能可靠地保护里面的宝物 — — 我们的私密数据。

方格锁,也就是基于格的加密方式,就像一个多维密码组合锁,其中的数字就像多维空间里的点。要解开这种锁,你不仅需要知道正确的数字,还要知道他们在这个多维空间中的位置, 由于组合的可能性近乎无穷,即使是拥有超强计算力的量子”魔法师”也难以破解这个数字组合,使得它在保障数据安全性上具有独特的优势。

椭圆曲线锁,也就是基于椭圆曲线的加密方式,就像一个精密的齿轮锁,其中的特定点和曲线就像锁的内部曲线齿轮。只有形状正确不差分毫的钥匙可以完美匹配这些无比复杂的曲线齿轮,从而将锁打开。它的设计允许更快的锁定和解锁,适用于需要高效率和速度的场景。

这两种锁都各具特色,为不同的安全需求提供了解决方案。Linea的安全性强化措施之一,就是充分利用了基于格的加密方式,确保即使在未来的技术进展下,它也能牢牢锁住我们的秘密。

如果你是科技极客的话:

高维向量空间

首先我们要理解什么是向量。向量是数学中的一个重要概念,它用来表示在空间中具有大小和方向的量。向量可以由多个分量组成,每个分量表示在空间的不同方向上的大小。在几何学和物理学中,向量通常用箭头来表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

向量在数学和物理学中有广泛的应用。它们用来表示力、速度、加速度、位移等物理量,在几何学中用来表示点、线、面等几何对象的方向和大小。在计算机科学中,向量也被广泛用于图形学、机器学习、数据分析等领域。

而高维向量空间是指向量的维度(dimension)很高的向量空间。在数学中,向量空间是由一组向量构成的集合,其中向量可以进行加法和数乘运算。每个向量都由多个分量组成,而向量空间的维度是指每个向量所包含的分量数量。

举个例子,我们可以考虑一个二维向量空间,其中的向量可以表示为 (x, y) 的形式,其中 x 和 y 是实数。这个二维向量空间可以形象地表示为平面上的点。同样地,我们也可以考虑一个三维向量空间,其中的向量可以表示为 (x, y, z) 的形式,这个三维向量空间可以形象地表示为三维空间中的点。

高维向量空间就是维度更高的情况,其中向量包含更多的分量。例如,我们可以考虑一个五维向量空间,其中的向量可以表示为 (x1, x2, x3, x4, x5) 的形式,这个五维向量空间不容易在现实世界中直观地表示,因为它涉及到五个独立的数值分量。

高维向量空间在数学、物理学、计算机科学等领域都有广泛的应用。在机器学习和数据分析中,数据点通常被表示为高维向量,每个维度对应数据中的一个特征。

SVP(最短向量问题)和CVP(最近向量问题)

SVP和CVP问题是基于格的密码学中的两个重要问题。具体来说:

  • 最短向量问题(SVP):在SVP问题中,给定一个格,目标是找到该格中长度最小的非零向量。即找到一个非零向量,使得它的长度(即向量的范数)在所有非零向量中最小。
  • 最近向量问题(CVP):在CVP问题中,给定一个格和一个目标向量,目标是找到该格中与目标向量最接近的向量。

测信道攻击(Side-channel attack)

测信道攻击(Side-channel attack)是一种攻击方式,攻击者不直接针对密码系统的算法本身,而是利用硬件实现过程中产生的外部信息(如电力消耗、电磁波、时间、声音等)来获取关于加密密钥或其他机密信息的线索。

常见的测信道攻击方法包括:

功耗分析攻击:攻击者通过测量加密设备在加密操作过程中的功耗变化来推断密钥。例如,逻辑1和逻辑0可能会产生不同的功耗,攻击者可以通过分析这些差异来获取关于密钥的信息。

时间攻击:攻击者根据算法执行的时间来推断信息。例如,某些加密操作对于不同的密钥可能需要不同的时间,攻击者可以利用这些时间差异来猜测密钥。

电磁攻击:通过测量设备在操作过程中产生的电磁辐射来推断密钥。

声音攻击:一些物理设备在操作时会产生微小的声响,这些声响可以被捕捉和分析,从而揭露关于其操作的信息。

光学攻击:例如,通过监视芯片上的光变化来收集信息。

为了抵御测信道攻击,硬件和软件设计者通常采取各种措施,例如引入随机性(如随机延时或随机功耗)来混淆外部观察,或者使用专门设计的电路和算法来均衡功耗和时间差异,使攻击者难以从旁路信息中提取有用的数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值