VOC格式标签转YOLO格式,xml转txt


前言

在深度学习项目中,通常会遇到不同的算法使用不同的标签格式。常见的标注数据标签有voc格式、coco格式、yolo格式、json格式等,具体想知道这几种标签格式有什么不同,请看“常见数据标注格式介绍”


一、voc格式标签是什么样的?

如下图在这里插入图片描述

二、转化后的yolo格式标签

如下图所示
在这里插入图片描述

二、转化方法及代码

1.引入库

代码如下(示例):

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

2.转换代码

代码如下(示例):

def convert(size, box):
    # size=(width, height)  b=(xmin, xmax, ymin, ymax)
    # x_center = (xmax+xmin)/2        y_center = (ymax+ymin)/2
    # x = x_center / width            y = y_center / height
    # w = (xmax-xmin) / width         h = (ymax-ymin) / height

    x_center = (box[0]+box[1])/2.0
    y_center = (box[2]+box[3])/2.0
    x = x_center / size[0]
    y = y_center / size[1]

    w = (box[1] - box[0]) / size[0]
    h = (box[3] - box[2]) / size[1]
    # print(x, y, w, h)
    return (x,y,w,h)
    
def convert_annotation(xml_files_path, save_txt_files_path, classes):  
    xml_files = os.listdir(xml_files_path)
    print(xml_files)
    for xml_name in xml_files:
        print(xml_name)
        xml_file = os.path.join(xml_files_path, xml_name)
        out_txt_path = os.path.join(save_txt_files_path, xml_name.split('.')[0] + '.txt')
        out_txt_f = open(out_txt_path, 'w')
        tree=ET.parse(xml_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)

        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult) == 1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
            # b=(xmin, xmax, ymin, ymax)
            print(w, h, b)
            bb = convert((w,h), b)
            out_txt_f.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
            
if __name__ == "__main__":
	# 1、改成xml标签中的类别名称
	classes1 = ['orange','grape','apple']   
    # 2、voc格式的xml标签文件路径
    xml_files1 = r'F:\imagesdata\images_xml'
    # 3、转化为yolo格式的txt标签文件存储路径
    save_txt_files1 = r'F:\imagesdata\images_yolo'

    convert_annotation(xml_files1, save_txt_files1, classes1)

总结

介绍了voc格式标签转换成yolo格式的标签方法,可用,简单方便,做深度学习项目必不可少的数据集处理脚本,感谢收藏关注!博主将会定期分享好用脚本工具。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

onnx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值