LGV引理:DAG多源多汇不相交路径乘积计数

正题

      证明啥的都不用管,这篇Blog里面的记住就行了.

      首先LGV引理只在DAG上有效.

      对于一条路径,我们定义它的权值为路径S上边权之积记为\omega(S)

      现在有k个起点a_i,k个终点b_i,对于一对起终点(a_i,b_j),我们定义e(a_i,b_j)=\sum_{S} \omega(S),S是起终点的任意一条路径.

      我们将e(a_i,b_j)放进一个k*k的矩阵当中,第i行第j列为e(a_i,b_j).

      我们对这个矩阵求行列式,就有:\det=\sum_{P}(-1)^{laowang(P)}\sum_{Q:a_i->b_{P_i},Q\ is\ mutually\ exclusive}\prod_{S\in Q}\omega(S)

      前面的P枚举的是一个排列,laowang(P)指的是逆序对个数,后面的prod枚举的是每一组从a_i->b_{P_i}的路径Q,这些路径要满足互不相交,每一组路径的权值就是每条路径权值乘起来.

      好像并不能做什么题?

      发现当只用数路径条数的时候,也就是边权为1,而且满足存在i!=Pi,全都是相交路径,那么行列式就恰好是ai到bi的不相交路径条数.

      目前只会板子emm

#include<bits/stdc++.h>
using namespace std;

const int N=110;
const int mod=998244353;
int ksm(int x,int t){
	int tot=1;
	while(t){
		if(t&1) tot=1ll*tot*x%mod;
		x=1ll*x*x%mod;
		t/=2;
	}
	return tot;
}
int n,m,a[N],b[N],fac[2000010],inv[2000010],T;
struct Matrix{
	int d[N][N];
	int gause(){
		int ans=1;
		for(int i=1;i<=m;i++){
			int wt=ksm(d[i][i],mod-2);
			for(int j=i+1;j<=m;j++) if(d[j][i]){
				int tmp=1ll*wt*d[j][i]%mod;
				for(int k=i;k<=m;k++) 
					d[j][k]+=mod-1ll*d[i][k]*tmp%mod,d[j][k]>=mod?d[j][k]-=mod:0;
			}
			ans=1ll*ans*d[i][i]%mod;
		}
		return ans;
	}
}M;

int C(int x,int y){
	return 1ll*fac[x]*inv[y]%mod*inv[x-y]%mod;
}

int main(){
	scanf("%d",&T);
	fac[0]=1;for(int i=1;i<=2000000;i++) fac[i]=1ll*fac[i-1]*i%mod;
	inv[2000000]=ksm(fac[2000000],mod-2);for(int i=1999999;i>=0;i--) inv[i]=1ll*inv[i+1]*(i+1)%mod;
	while(T--){
		scanf("%d %d",&n,&m);
		for(int i=1;i<=m;i++) scanf("%d %d",&a[i],&b[i]);
		for(int i=1;i<=m;i++)
			for(int j=1;j<=m;j++)
				if(a[i]<=b[j]) M.d[i][j]=C(n-1+b[j]-a[i],b[j]-a[i]);
				else M.d[i][j]=0;
		printf("%d\n",M.gause());
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值