最近看到的,将题目稍微抽象简化了一下。
题目描述
给定一个有向无环图,有 n 个顶点(1~n)和 m 条边,要统计从点 s 到点 t 的路径数目。
题解
如果这是一个无向图,那么就是一个非常弱智的 dp。但是因为这是一个有向图,对dp顺序有一定要求。
因此首先使用拓扑排序求出整个图的拓扑序,然后再从终点开始向前递推,动态规划计数。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 20005;
int n,m;
vector<int> e[maxn];
int degree[maxn];
vector<int> topo_sort(int d[], int n) {
vector<int> res;
queue<int> q;
for(int i=1;i<=n;i++) {
if(d[i]==0) {
q.push(i);
}
}
while(!q.empty()) {
int u = q.front(); q.pop();
res.push_back(u);
for(int i=0;i<int(e[u].size());i++) {
int v = e[u][i];
d[v]--;
if(d[v]==0) {
q.push(v);
}
}
}
return res;
}
// s-起点,t-终点,n-顶点数
int count_path_number(int d[],int s,int t,int n) {
vector<int> a = topo_sort(d,n);
int dp[n+5];
memset(dp,0,sizeof(dp));
for(auto i:a) cout << i << ' ';
dp[t] = 1; //从终点向起点反向遍历
for(int i=n;i>=1;i--) {
int u = a[i-1];
for(int j=0;j<int(e[u].size());j++) {
int v = e[u][j];
dp[u] += dp[v];
}
}
return dp[s];
}
int main() {
cin >> n >> m;
for(int i=0;i<m;i++) {
int u,v;
cin >> u >> v;
e[u].push_back(v);
degree[v]++;
}
cout << count_path_number(degree,1,n,n);
return 0;
}
/* 样例
5 7
1 2
2 3
1 3
3 5
2 5
4 1
4 5
*/