求有向无环图(DAG)中起点到终点的路径条数

最近看到的,将题目稍微抽象简化了一下。

题目描述

给定一个有向无环图,有 n 个顶点(1~n)和 m 条边,要统计从点 s 到点 t 的路径数目。

题解

如果这是一个无向图,那么就是一个非常弱智的 dp。但是因为这是一个有向图,对dp顺序有一定要求。

因此首先使用拓扑排序求出整个图的拓扑序,然后再从终点开始向前递推,动态规划计数。

#include <bits/stdc++.h>
using namespace std;

const int maxn = 20005;

int n,m;
vector<int> e[maxn];
int degree[maxn];

vector<int> topo_sort(int d[], int n) {
    vector<int> res;
    queue<int> q;
	for(int i=1;i<=n;i++) {
		if(d[i]==0) {
            q.push(i);
        }
	}
    while(!q.empty()) {
        int u = q.front(); q.pop();
        res.push_back(u);
        for(int i=0;i<int(e[u].size());i++) {
            int v = e[u][i];
            d[v]--;
            if(d[v]==0) {
                q.push(v);
            }
        }
    }
    return res;
}

// s-起点,t-终点,n-顶点数
int count_path_number(int d[],int s,int t,int n) {
    vector<int> a = topo_sort(d,n);
    int dp[n+5];
    memset(dp,0,sizeof(dp));

    for(auto i:a) cout << i << ' ';
    dp[t] = 1; //从终点向起点反向遍历
    for(int i=n;i>=1;i--) {
        int u = a[i-1];
        for(int j=0;j<int(e[u].size());j++) {
            int v = e[u][j];
            dp[u] += dp[v];
        }
    }
    return dp[s];
}

int main() {
	cin >> n >> m;
	for(int i=0;i<m;i++) {
		int u,v;
		cin >> u >> v;
		e[u].push_back(v);
		degree[v]++;
	}	
    cout << count_path_number(degree,1,n,n);
    return 0;
}

/* 样例
5 7
1 2
2 3
1 3
3 5
2 5
4 1
4 5
*/
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

总想玩世不恭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值